Cukurova University, Turkey
Directorate of Provincial Agriculture and Foresty, Turkey
* Corresponding author
Alata Horticultural Research Institute, Turkey
Adana Food Control Laboratory Dırectorate, Turkey
Institute of Natural and Applied Sciences, Turkey
Adana Food Control Laboratory Directorate, Turkey
Collage of Engineering and Architecture, Turkey

Article Main Content

It has recently been recognized that some commercial infant formulae have, due to spoilage and pathogen microorganisms, which are detected risks to health, been recalled and reported in the Rapid Alert System for Food and Feed on notification lists. The risk of microbial contamination from the environment or from the addition of ingredients to cereal-based follow-on formulae (FOF) and powdered infant foods (PIF) products could occur under poor hygienic conditions. This project was designed to evaluate the associated risks of Cronobacter sakazakii, Salmonella, Total Coliform, E. coli, E. coli O157:H7, Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus and Ochratoxin-A in PIF, FOF and rice flour products marketed in Turkey. Seventy-four baby formulae and thirteen rice flour trademarks obtained in 2018 randomly from different markets in Samsun, Kars, and Adana in Turkey. Salmonella, C. sakazakii, Coliform, S. aureus, L. monocytogenes and Bacillus cereus were analyzed using the ISO 6579:2002, ISO/TS 22964:2006, MPN, FDA (2001), FDA (1998) and FDA (2012) methods, respectively. C. sakazakii was isolated from 7/74 FOF products and 4/13 rice flour products, yielding 12.64% prevalence. Salmonella, S. aureus and L. monocytogenes were not detected in any of the samples. The FOF products, including cereals of different origins and one rice flour sample (7.69%), were found to be contaminated with B. cereus (6.76%) and B. subtilis (5.41%). OTA values were found to be above the legal limits in 4.05% (3/74) FOF products. These results suggest that routine quality controls and hazard and risk analysis for infant foods have to be much more rigorous in terms of the potential risk of microbiological contamination.

References

  1. WHO (World Health Organization 2016). Infant and Young Child Feeding, [Online] Available: https://www.who.int/news-room/fact-sheets/detail/infant-and-young-child-feeding.
     Google Scholar
  2. A. Arsalan, S.B.S. Naqvi, S.I. Ali, and Z. Anwar, “Contamination of microorganisms in pediatric Infant formulae marketed in Karachi,” Annals. Food Sci. Technol., vol 14, no.2, pp. 319-326, January 2013.
     Google Scholar
  3. S. Fanning, and S.J. Forsythe, Isolation and identification of Enterobacter sakazakii. In: Enterobacter sakazakii,” Ed By: Jeffrey M. Farber and Stephen J. Forsythe. ASM Press, Washington, 2008, pp. 27-59.
     Google Scholar
  4. J. Cappozzo, L. Jackson, H.J. Lee, W. Zhou, F. Al-Taher, et al., “Occurrence of ochratoxin A in infant foods in the United States,” J. Food Prot., vol 80, pp. 251–256, doi: 10.4315/0362-028X.JFP-16-339, February 2017.
     Google Scholar
  5. B. Kabak, “Ochratoxin A in cereal-derived products in Turkey: Occurrence and exposure assessment,” Food Chem. Toxicol., vol. 47, no. 2, pp. 348-52, December 2009. doi: 10.1016/j.fct.2008.11.019.
     Google Scholar
  6. CXS (Codex Alimentarius International Food Standards 2006). Standard for Processed Cereal-Based Foods for Infants and Young Children, CXS 74-1981 Revised in 2006, [Online] Available: http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B74-1981%252FCXS_074e.pdf.
     Google Scholar
  7. CXS (Codex Alimentarius International Food Standards 2019). 41st Session of the Codex Committee on Nutrition and Foods for Special Dietary Uses (CCNFSDU), [Online] Available: https://www.fssai.gov.in/upload/uploadfiles/files/Brief_Report_41st_Codex_CCNFSDU_03_02_2020.pdf.
     Google Scholar
  8. EC (Commission Regulation 2005). Commission Directive No 2073/2005 on Microbiological Criteria for Foodstuffs, [Online] Available: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02005R2073-20140601&from=EN.
     Google Scholar
  9. TFC (Turkish Food Codex 2011a). Regulation on Turkish Food Codex Microbiological Criteria, [Online] Available: https://www.tarimorman.gov.tr/Belgeler/ENG/Legislation/regulation_microbiological_criteria.pdf.
     Google Scholar
  10. X. Wang, J. Meng, J. Zhang, T. Zhou, and Y. Zang, et al., “Characterization of Staphylococcus aureus isolated from powdered infant formulae milk and infant rice cereal in China,” Int J Food Microbiol., vol. 153, no. 1-2, pp. 142-147, February 2012. doi:10.1016/j.ijfoodmicro.2011.10.030.
     Google Scholar
  11. E. Rahimi, F. Abdos, H. Momtaz, Z.T. Baghbadorani, and M. Jalali, “Bacillus cereus in infant foods: Prevalence study and distribution of enterotoxigenic virulence factors in Isfahan province, Iran,” Hindawi Publishing Corporation Iran. Sci. World J., vol. 1, pp. 1-5, May 2013. doi:10.1155/2013/292571.
     Google Scholar
  12. J. Kadariya, T.C. Smith, and D. Thapaliya, “Staphylococcus aureus and Staphylococcal Food-Borne Disease: An Ongoing Challenge in Public Health,” Biomed. Res. Int., vol. 4, no. 1, pp. 1-9, April 2014. doi: 10.1155/2014/827965.
     Google Scholar
  13. C. Sezer, L. Vatansever, and N. Bilge, “The Microbiological quality of infant milk and follow-on formula,” Van Vet J., vol. 26, no. 1, pp. 31-34, 2015.
     Google Scholar
  14. Z.I. Sadek, M.A. Abdal-Rahman, M.S. Azab, O.M. Darwesh, and M.S. Hassan, “Microbiological evaluation of infant foods quality and molecular detection of Bacillus cereus toxins relating genes,” Toxicol. Rep., vol. 5, pp. 871-877, August 2018. doi:10.1016/j.toxrep.2018.08.013.
     Google Scholar
  15. S. Ozcakmak, and A. Cetinkaya, “The presence of Cronobacter sakazakii, Enterobacteriaceae spp. and Ochratoxin-A in Infant Rice-based formula and milled rice product,” HJSE., vol. 5, no. 2, pp. 85-90, 2018. doi:10.17350/HJSE19030000069.
     Google Scholar
  16. G.M. Abebe, “Cronobacter sakazakii in infant food contamination and ıis survival strategies in hostile conditions,” Int. J Pediatr. Res., vol. 6, no. 2, pp. 1-11, 2020. doi: 10.23937/2469-5769/1510067.
     Google Scholar
  17. IBFAN (International Baby Food Action Network 2018). Contaminants in baby foods. [Online] Available: https://www.ibfan-icdc.org/wp-content/uploads/Product-Recall-List-2014 2019.pdf.
     Google Scholar
  18. Anonymous (2018). New Europe's Premium content: Lactalis to withdraw baby formula from 83 countries. [Online] Available: https://www.neweurope.eu/article/lactalis-withdraw-baby-formula-83-countries/.
     Google Scholar
  19. IBFAN (International Baby Food Action Network 2019). Different President’s Choice baby formula recalled for Cronobacter. [Online] Available: https://www.foodsafetynews.com/2019/10/different-presidents-choice-baby-formula-recalled-for-cronobacter/.
     Google Scholar
  20. C. Iversen, and S. Forsythe, “Isolation of Enterobacter sakazakii and other Enterobacteriaceae from powdered infant formulae milk and related products,” Food Microbiol., vol. 21, pp. 771-77, December 2004. doi: 10.1016/j.fm.2004.01.009.
     Google Scholar
  21. ISO/TS 22964 (International Organization for Standardization 2006). Milk and Milk Products-Detection of Enterobacter sakazakii. The Pre-standard of the Technical Specification ISO⁄TS22964:2006. 1st Ed., pp. 15. Prague: The Czech Standard Institute. [Online] Available: https://www.iso.org/standard/41258.html.
     Google Scholar
  22. FDA (Food and Drug Administration 1998a). Bacteriological Analytical Manual: Staphylococcus aureus, In: AOAC International, 8th Rev. Ed., Gaithersburg, MD, pp. 12.01-12.05. [Online] Available: https://www.fda.gov/food/laboratory-methods-food/bam-chapter-12-staphylococcus-aureus.
     Google Scholar
  23. ISO (International Organization for Standardization 2002) 6579:2002. Microbiology of food and animal feeding stuffs-Horizontal method for the detection of Salmonella spp. [Online] Available: https://www.iso.org/obp/ui/#iso:std:iso:6579:ed-4:v1:en.
     Google Scholar
  24. L. Piknová, A. Stefanovicov, H. Drahovska, M. Sásik, and T. Kuchta, “Detection of Salmonella in food, equivalent to ISO 6579, by a three-days polymerase chain reaction-based method,” Food Control, vol. 13, no.3, pp. 191–194, April 2002. doi: 10.1016/S0956-7135(01)00099-8.
     Google Scholar
  25. CDC (Centers for Disease Control and Prevention 1993). Salmonella serotype Tennessee in powdered milk products and infant formulae Canada and United States, Morbidity and Mortality Weekly Report. vol. 2, pp. 516-517. [Online] Available: https://www.cdc.gov/mmwr/preview/mmwrhtml/00021081.htm.
     Google Scholar
  26. F. Gök, and I. Var, “Piyasadan sağlanan tahin helvalarının mikrobiyolojik kalitesinin belirlenmesi ve Salmonella spp. izolasyonu,” M.S. thesis, Dept. Food Eng., Çukurova Univ., Adana, Turkey, 2005.
     Google Scholar
  27. FDA (Food and Drug Administration 1998b). Bacteriological Analytical Manual Chapter 10: Detection of Listeria monocytogenes in foods and environmental samples, and enumeration of L. monocytogenes in foods. [Online]. Available: https://www.fda.gov/food/laboratory-methods-food/bam-chapter-10-detection-listeria-monocytogenes-foods-and-environmental-samples-and-enumeration.
     Google Scholar
  28. FDA (Food and Drug Administration 2002). BAM: Enumeration of Escherichia coli and the coliform bacteria. [Online] Available: https://www.fda.gov/food/laboratory-methods-food/bam-chapter-4-enumeration-escherichia-coli-and-coliform-bacteria.
     Google Scholar
  29. CDC (Centers for Disease Control and Prevention 1994). Centers for Disease Control and Prevention. E. coli O157:H7: Procedure for Isolation and Identification from Stool Specimens. Foodborne and Diarrheal Diseases Branch, Division of Baterial and Mycotic Diseases, National Center for Infectious Diseases.
     Google Scholar
  30. FDA (Food and Drug Administration 1998c). Bacteriological Analytical Manual (BAM): BAM Appendix 2: Most Probable Number from serial dilutions. [Online] Available:https://www.fda.gov/food/laboratory-methods-food/bam-appendix-2-most-probable-number-serial-dilutions#references.
     Google Scholar
  31. A. Tekin, and I. Var, “Dondurmalardan Listeria spp’lerin izolasyonu ve tanımlaması üzerine bir araştırma,” Ç.Ü. Müh. Fak. Derg., vol. 25, no. 2, pp. 153-161, 2011.
     Google Scholar
  32. FDA (Food and Drug Administration), “Bacteriological Analytical Manual (BAM): Bacillus cereus,” [Online]. Available: https://www.fda.gov/food/laboratory-methods-food/bam-chapter-14-bacillus-cereus, 2012.
     Google Scholar
  33. ISO 7932:2004 (International Organization for Standardization 2004). Microbiology of food and animal feeding stuffs-Horizontal method for the enumeration of presumptive Bacillus cereus-colony count technique at 30 degrees C. [Online] Available: https://www.iso.org/standard/76664.html.
     Google Scholar
  34. AOAC (Official Methods of Analysis 2014, AOAC SMPR® 2014.016). Standard Method Performance Requirements (SMPRs®) 2014.016: Revised: Determination of Fluoride in Infant and Adult/Pediatric Nutritional Formula Approved by AOAC Stakeholder Panel on Infant Formula and Adult Nutritionals (SPIFAN). [Online] Available: http://www.eoma.aoac.org/SMPR/upload/45/SMPR%202014_016.pdf.
     Google Scholar
  35. M. Gökmen, K.K. Tekinşen, and U. Gurbuz, “Presence of Enterobacter sakazakii in milk powder, whey powder and white cheese produced in Konya,” Kafkas Üniv.Vet Fak. Derg, vol.16 (Suppl-A), pp. 163-166, January 2010. doi:10.9775/kvfd. 2010.2801.
     Google Scholar
  36. M.K. Jung, and J.H. Park, “Prevalence and thermal stability of Enterobacter sakazakii from unprocessed ready-to-eat agricultural products and powdered infant formulae,” Food Sci. Biotechnol., vol. 15, no. 1, pp. 152-157, 2006. 2092-6456 (eISSN).
     Google Scholar
  37. M.C. Pina-Pérez, D. Rodrigo, and A. Martínez, “Non-thermal inactivation of Cronobacter sakazakii in infant formula Milk: A Review, Crit. Rev. Food Sci. Nutr., vol. 56, no. 10, July 2015. doi: 10.1080/10408398.2013.781991.
     Google Scholar
  38. G. Boué, E. Cummins, S. Guillou, J.P Antignac, B.L. Bizec, and J.M. Membré, “Public health risks and benefits associated with breast milk and infant formula consumption,” Crit. Rev. Food Sci. Nutr. Vol. 58, no. 1, pp. 126–145, January 2016. doi: 10.1080/10408398.2016.1138101.
     Google Scholar
  39. T.M. Osaili, R.R. Shaker, M.M. Ayyash, A.A. Al-Nabulsi, S.J. Forsythe, “Survival and growth of Cronobacter species (Enterobacter sakazakii) in wheat-based infant follow on formulae. Lett. Appl. Microbiol., vol. 48, no. 4, pp. 408-412, March 2015. doi:10.1111/j.1472-765X.2008.02541.x.
     Google Scholar
  40. FAO and WHO (World Health Organization-Food and Agriculture Organization 2006), “Enterobacter sakazakii and Salmonella in powdered infant formulae; meeting report. Microbiological risk assessment series 10,” WHO press, Geneva, Switzerland. [Online] Available: http://www.who.int/foodsafety/publications/ micro/mra10/en/
     Google Scholar
  41. F.J. Angulo, S.M. Cahill, I.K. Wachsmuth, M. de Lourdes Costarrica, and P.K.B. Embarek, “Powdered infant formulae as a source of Salmonella infection in infants,” Clin. Infect. Dis., vol. 46, no. 2, pp. 268-273, January 2008. doi: 10.1086/524737.
     Google Scholar
  42. S.A. Kim, S.W. Oh, Y.M. Lee, J.Y. Imm, and I.G. Hwang, et al, “Microbial contamination of food products consumed by infants and babies in Korea,” Lett. Appl. Microbiol., vol. 53, no. 5, pp. 532-538, November 2004. doi: 10.1128/CMR.17.3.638-680.2004.
     Google Scholar
  43. D. Kaufman, and K.D. Fairchild, “Clinical microbiology of bacterial and fungal sepsis in very-low-birth weight infants,” Clin. Microbiol. Rev., vol. 17, no. 3, pp. 638-680, July 2004. doi: 10.1128/CMR.17.3.638-680.2004.
     Google Scholar
  44. FAO and WHO (Food and Agriculture Organization and World Health Organization 2004), “Enterobacter sakazakii and other microorganisms in powdered infant formulae,” Microbiological Risk Assessment series no. 6. [Online] Available: http://www.fao.org/3/y5502e/y5502e0c.htm#bm12.1.
     Google Scholar
  45. FAO and WHO. (Food and Agriculture Organization and World Health Organization 2008). Report of the 2nd Session of the Codex Committee on Contaminants in Foods. The Hague, The Netherlands, 31 March-4 April 2008. Rome, Food and Agriculture Organization of the United Nations, Joint FAO/WHO Food Standards Programme, Codex Alimentarius Commission. [Online] Available: http:// www.codexalimentarius.net/download/report/700/al31_41e.pdf.
     Google Scholar
  46. Z.W. Jaradat, W. Al Mousa, A. Elbetieha, A.A. Nabulsi, B.D. Tall, “Cronobacter spp.-opportunistic food-borne pathogens. A review of the irvirulence and environmental-adaptive traits,” J Med. Microbiol. 63, 1023-1037, May 2014. https://doi.org/10.1099/jmm.0.073742-0.
     Google Scholar
  47. T. Roberts, A. Ahl, and R. McDowell, “Risk assessment for foodborne microbial hazards. Tracking foodborne pathogens from farm to table,” Data Needs to Evaluate Control Options,” T. Roberts, H. Jensen, and L. Unnevehr, eds., U.S. Department of Agriculture, Economic Research Service, MP-1532, pp. 95-115, January 1995. [Online] Available: http://www.ers.usda.gov/publications/MP1532/mp1532.pdf.
     Google Scholar
  48. A. Unluturk, and F. Turantaş, “Gıda Mikrobiyolojisi,” 3. Baskı. sayfa 77-81. Ege Üniversitesi Ege Meslek Yüksekokulu Gıda Teknolojisi Programı, İzmir, Türkiye, 2003.
     Google Scholar
  49. S. Fanning, and S.J. Forsythe (2008). Isolation and identification of Enterobacter sakazakii. In: Enterobacter sakazakii, Ed By: Jeffrey M. Farber and Stephen J. Forsythe. ASM Press, Washington, pp. 27-59.
     Google Scholar
  50. E.Threlfall, L. Ward, M. Hampton, A.M. Ridley, B. Rowe, et al. “Molecular finger printing defines a strain of Salmonella enterica serotype Anatum responsible for an international out break associated with formulae-dried milk,” Epidemiol. Infect., vol. 121, no. 2, pp. 289-293, October 1998. doi:10.1017/s0950268898001149.
     Google Scholar
  51. J. Park, Seok, W., Choi, B., H.M. Kim, B.K. Lim, et al, “Salmonella enterica sero var. London infections associated with consumption of infant formulae,” Yonsei Medical Journal, vol. 45, no.1, pp. 43-48, February 2004. doi:10.3349/ymj.2004.45.1.43.
     Google Scholar
  52. J.B. Gurtler, J.L. Kornacki, and L.R. Beuchat, “Enterobacter sakazakii: A coliform of increased concern to infant health,” Int J Food Microbiol., vol 104, no. 1, pp.1-34, 2005. doi:10.1016/j.ijfoodmicro.2005.02.013.
     Google Scholar
  53. S. Estuningsih, C. Kress, A.A. Hassan, O. Akineden, E. Schneider, and E. Usleber, “Enterobacteriaceae in dehydrated powdered infant formulae manufactured in Indonesia and Malaysia. J Food Protect., vol. 69, no. 12, pp. 3013-7, December 2006. Doi:10.4315/0362-028x-69.12.3013.
     Google Scholar
  54. K. Oonaka, K. Furuhata, M. Hara, and M. Fukuyama, “Powder infant formulae milk contaminated with Enterobacter sakazakii,” Jpn J Infect. Dis.,
     Google Scholar
  55. vol. 63, no. 2, pp. 103-7, March 2010. PMID: 20332571
     Google Scholar
  56. L. Yan, Q. Feng, S. Mei-Iing, Wei, W., “Screening for Enterobacteriaceae bacteria in infant formulae powder,” J Northeast Agric. Univ. (English edition), vol. 19, no. 1, pp. 68-72, March 2012. doi: 10.1016/S1006-8104(12)60041-5.
     Google Scholar
  57. CAC (Codex Alimentarius Commission 2008). Code of Hygienic Practice for Powdered Formulae for Infants and Young Children (CAC/RCP66-2008). Rome: Joint FAO/WHO Food Standards Programme. [Online]. Available: https://www.maff.go.jp/j/shokusan/seizo/pdf/66-2008.pdf.
     Google Scholar
  58. J. Chap, P. Jackson, R. Siqueira, N. Gaspar, C. Quintas, et al., “International survey of Cronobacter sakazakii and other Cronobacter spp. in follow-on formulae and infant foods,” Int. J Food Microbiol., vol. 136, no. 2, pp. 185-188, December 2009. doi:10.1016/j.ijfoodmicro.2009.08.005.
     Google Scholar
  59. T. Tuncer, U. Çiftçi, and M. Aydın, “Çocuk mamalarında Bacillus cereus araştırması,” Türk Hij. Den. Biyol. Derg., vol. 44, no.1, pp.27-35. 1987.
     Google Scholar
  60. Ö. Ergün, H. Aksu, Ö.Ö. Arun, and Çolak, H., “Ülkemizde satılan bebek ve çocuk mamalarında gıda zehirlenmesine neden olan önemli bazı mikroorganizmaların varlığı üzerine araştırmalar,” Gıda. Vol. 27, pp. 253-57, 2002.
     Google Scholar
  61. M. Shadlia Matug, K.E. Aidoo, A.A. Candlish, and Elgerbi, A.M., “Evaluation of some antibiotics against pathogenic bacteria isolated from infant foods in North Africa,” The Open Food Sci J., vol. 2, pp. 95-101, 2008. doi: 10.2174/1874256400802010095.
     Google Scholar
  62. B.G. Çöl, “Çeşitli gıdalarda Bacillus cereus toksinlerinin varlığı ve tiplendirilmesi,” İstanbul Univ., Sağlık Blm. Enst., Doktora Tezi, 147, İstanbul.
     Google Scholar
  63. EC (European Commission 2006). Directive 2006/125/EC of 5 December 2006 on processed cereal-based foods and baby foods for infants and young children. [Online] Available: https://eurlex.europa.eu/legalcontent/EN/TXT/PDF/?uri=CELEX:32006L0125&from=EN,
     Google Scholar
  64. TFC (Turkish Food Codex 2011b). Regulation on Contaminants in foodstuffs. [Online] Available: https://www.informea.org/en/legislation/turkish-food-codex-regulation-contaminants-foodstuffs.
     Google Scholar
  65. G.A. Lombaert, P. Pellaers, V. Roscoe, M. Mankotia, R. Neil,et al., “Mycotoxins in infant cereal foods from the Canadian retail market,” Food Addit. Contam., vol. 20, pp. 494–504, November 2003. doi.org/10.1080/0265203031000094645.
     Google Scholar
  66. J. Wolff, “Ochratoxin A in cereals and cereal products,” Archivfu¨r Lebensmittelhygiene, vol. 51, no. 4/5, pp. 85-88, 2000. ISSN: 0003-925X, Record Number: 20003024230. Publisher: Verlag M & Schaper H.
     Google Scholar
  67. B. Beretta, R. De Domenico, A. Gaiaschi, C. Ballabio, C.L. Galli, et al., “Ochratoxin A in cereal-based baby foods: Occurrence and safety evaluation,” Food Addit. Contam., vol. 19, no. 1, pp. 70-75, January 2002. doi:10.1080/02652030110070021.
     Google Scholar
  68. F.S. Ferre, “Worldwide occurrence of mycotoxins in rice,” Food Control, vol. 62, pp. 291-8, February 2016, doi:10.1016/j.foodcont.2015.10.051.
     Google Scholar
  69. X.D. Sun, P. Su, and H. Shan, “Mycotoxin contamination of rice in China,” J Food Sci., vol. 82, no. 3, pp. 573-584, 2017. do:10.1111/1750-3841.13631.
     Google Scholar
  70. IARC (International Agency for Research on Cancer), “Monographs on the evaluation of carcinogenic risks of chemicals to humans: some food additives, feed additives and naturally occurring substances,” Lyon, France. 31, pp. 191-206. [Online]. Available: https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Some-Food-Additives-Feed-Additives-And-Naturally-Occurring-Substances-1983, 1983.
     Google Scholar
  71. J. L. Herrman, and R. Walker (1999). Risk analysis of mycotoxins by the Joint FAO/WHO Expert Committee on Food Additives (JEFCA), FNA/ANA 23: 17-24. [Online] Available: http://www.fao.org/3/X2100t/X2100t06.pdf.
     Google Scholar
  72. A. Goncalves, A. Gkrillas, J.L. Dorne, C. Dall’Asta, R. Palumbo, et al., “Pre- and postharvest strategies to minimize mycotoxin contamination in the rice food chain,” Compr Rev Food Sci. Food., vol. 18, pp. 441-454, February 2019. doi:10.1111/1541-4337.12420.
     Google Scholar
  73. T. Baydar, P. Erkekoğlu, H. Sipahi, G. Sahin, “Aflatoxin B1, M1 and Ochratoxin A levels in infant formulae and baby foods marketed in Ankara, Turkey,” J Food Drug Anal., vol. 15, no. 1, pp. 89-92, March 2007. doi:10.38212/2224-6614.2446.
     Google Scholar
  74. E.A. Johnson, W.H. Tepp, M. Bradshaw, R.J. Gilbert, P.E. Cook, et al., “Characterization of Clostridium botulinum strains associated with an infant botulism case in the United Kingdom,” J Clin Microbiol., vol. 43, no. 6, pp. 2602-7, June 2005. doi: 10.1128/JCM.43.6.2602-2607.2005.
     Google Scholar