Post-harvest Profiles of Polyphenols, Vitamins and Amino Acids in Pulp of Kent Mango Grown in Côte d’Ivoire
Article Main Content
Pulp of Kent mango (Mangifera indica L.) grown in Côte d’Ivoire was analyzed for it post-harvest profiles in polyphenols, vitamins and amino acids. HPLC method was used for determination of polyphenols, vitamins and amino acids in pulp during 12 post-harvest days. The results revealed the reduction of the polyphenols composition in Kent mango pulp from harvest until the 12th day except gallic acid. This composition is reduced from 9.63±0.52 to 4.31±0.00 mg/100g (gallotanins); 3.22±0.10 to 1.55±0.05 mg/100g (mangiferin); 8.99±0.57 to 2.57±0.00 mg/100g (quercetin) and 3.38±0.34 to 0.92±0.07 mg/100g (isoquercetin). Gallic acid composition increased from 20.39±0.40 to 22.60±0.31 after 6 post-harvest days. The gallic acid content is reduced from 21.34±0.02 to 13.46±0.30 mg/100g between the 6 and 12 post-harvest days. For vitamins of mango pulp, provitamin A content increases from 2nd day (28.03±0.93 µg/100g) to 12th day (50.17±1.12µg/100g). Vitamin B3, B5, and K are stable from 2nd to 4th day before respectively decreased from 1.23±0.06 to 0.10±0.02 mg/100g (vitamin B3); 0.19±0.02 to 0.04±0.01mg/100g (vitamin B5) and 5.00±0.81 to 2.66±0.47µg/100g (vitamin K) between the 6th and 12th day. Vitamins B6 and E contents remained stable during the 6 post-harvest days before decreased until the 12th day from 0.15±0.01 to 0.02±0.01 and 0.63±0.04 to 0.24±0.09 respectively. Concerning amino acids contents, alanin and glutamic acid decreased respectively from 70.66±0.93 to 40.40 mg/100g and 82.33±0.15 to 48.66±0.33 mg/100g between the 2nd and 12th post-harvest days. Valin and tryptophan contents increased respectively from 33.00 to 42.33 mg/100g and 8.33 to 16 mg/100g from the 2nd to 8th day unlike leucin and methionine which decreased during the 12 days of ripening. This study showed that pulp of Kent mango of Côte d’Ivoire has interesting polyphenols, vitamins and amino acids profiles during the 6th and 8th post-harvest day. To our knowledge, this is the first time that a similar study has been carried out on the evolution of polyphenols, vitamins and amino acids content in Kent mango pulp during it post-harvest ripening.
References
-
Ajila C.M., Bhat S.G. & Prasada Rao U.J.S. (2007). Valuable components of raw and ripe peels from two Indian mango varieties. Food Chemistry, 102: 1006-1011.
Google Scholar
1
-
Rincon A.M. & Kerr W.L. (2010). Influence of osmotic dehydration, ripeness and frozen storage on physicochemical properties of mango. Journal of Food Processing and Preservation. 34(5): 887-903.
Google Scholar
2
-
Sogi D., Siddiq M., Roidoung S & Dolan K.D. (2012). Total Phenolics, Carotenoids, Ascorbic Acid, and Antioxidant Properties of Fresh-cut Mango. Journal of Food Science. 77(11).
Google Scholar
3
-
Djioua T. (2010). Amélioration de la conservation des mangues 4ème gamme par application de traitements thermiques et utilisation d’une conservation sous atmosphère modifiée. Thèse 170p.
Google Scholar
4
-
Ambriz-Perez D.L., Leyva-Lopez N., Gutierrez-Grijalva E.P. & Heredia J.B. (2016). Phenolic compounds: Natural alternative in inflammation treatment. A review. Cogent Food Agric. 2(1).
Google Scholar
5
-
Han X., Shen T. & Lou H. (2007). Dietary polyphenols and their biological significance. Int J Mol Sci. 8(9):950.
Google Scholar
6
-
Kang N.J., Shin S.H., Lee H.J. & Lee K.W. (2011). Polyphenols as small molecular inhibitors of signaling cascades in carcinogenesis. Pharmacol Ther.130(3):310–24.
Google Scholar
7
-
Pérez-Jiménez J., Neveu V., Vos F. & Scalbert A. (2010). Identification of the 100 richest dietary sources of polyphenols: an application of the Phenol-Explorer database. Eur J Clin Nutr. 64:S112–20.
Google Scholar
8
-
Saadi O. (1962). Les vitamines. Cours 12p.
Google Scholar
9
-
Nutrifacts (2015). Vitamines. Edition Nestlé. 16p.
Google Scholar
10
-
INRA (2012). L’avenir des légumineuses dans l’alimentation humaine. 22p.
Google Scholar
11
-
Stewart G.R. & Lahrer F. (1980). Accumulation of amino acids and related compounds in relation to environmental stress.In: Stumpf P.K. et Conn E.E., eds. The biochemistry of plants. New York, Academic Press, v.4, 609-635.
Google Scholar
12
-
Fowden L. (1978). Non-protein nitrogen compounds: toxicity and antagonistic action in relation to amino protein synthesis. In: NORTON G., ed. Plant proteins. London, Butterworths, 109-115.
Google Scholar
13
-
Couplan F. (2012). Lettre d’information n°8. 10p.
Google Scholar
14
-
Alanon M.E., Palomo I., Rodriguez L., Fuentes E., Arraez-Roman D and Segura-Carretero A. (2019). Antiplatelet Activity of Natural Bioactive Extracts from Mango (Mangifera Indica L.) and its ByProducts. Antioxidants (Basel). 8(11): 517.
Google Scholar
15
-
Singleton V.L., Orthofer R. & Lamuela-Raventos R.M. (1999). Analysis of total phenols and other oxydant substrates and antioxydants by means of Folinciocalteu reagent. Methods Enzymol., 299: 152-178.
Google Scholar
16
-
N’ganzoua K.R., Camara B & Dick E. (2010). Evaluation des changements physico-chimiques caractérisant le mûrissement au cours de l’entreposage de trois variétés de bananes Musa spp. (AAB, cv. Corne 1; AAA, cv. Poyo et AA, cv. Figue Sucrée). Sciences & Nature. 7(2): 155 – 163.
Google Scholar
17
-
Yahiaoui K., Ouahiba B., Arab K & Benchabane A. (2021). Évolution de la fraction lipidique et protéique au cours de la maturation de la datte Deglet-Nour. Revue Nature et Technologie, 13 (1) (2021): 65-71.
Google Scholar
18
-
Duchene-Massias A.(2015). Valorisation fonctionnelle et antioxydante des épidermes de pommes Golden Delicious. Thèse. 231p.
Google Scholar
19
-
Karamaæ M., Kosiñska A. & Pegg R.B. (2006). Content of gallic acid in selected plant extracts. J Food Nutr Sci. 15(1):55–8.
Google Scholar
20
-
Renard C.M.G.C., Dupont N. & Guillermin P. (2007). Concentrations and characteristics of procyanidins and other phenolics in apples during fruit growth. Phytochemistry 68: 1128–1138.
Google Scholar
21
-
Bernillon S., Guyot S., Renard C.M.G.C. (2004). Detection of phenolic oxidation products in cider apple juice by high-performance liquid chromatography electrospray ionisation ion trap mass spectrometry. Rapid Commun. Mass Spectrom 18: 939–943.
Google Scholar
22
-
Robards K., Prenzler P.D., Tucker G., Swatsitang P., Glover W. (1999). Phenolic compounds and their role in oxidative processes in fruits. Food Chemistry 66: 401-436.
Google Scholar
23
-
Shashank K. & Pandey A.K. (2013). Chemistry and biological activities of flavonoids. Hindawi Sci World J. (12):533–48.
Google Scholar
24
-
Matile P. (1980). Catabolism of chlorophyll: involvement of peroxydase. Z. Pflanzenphysiol. 99: 475-478.
Google Scholar
25
-
Martinoia E., Dalling M.J. & Matile P. (1982). Catabolism of chlorophyll, demonstration of chloroplast localised peroxydative and oxydative activities. Z. Pflanzenphysiol. 109: 269-279.
Google Scholar
26
-
Blackbourn H.D., John P. & Jeger M.J. (1989). Ultrastructural and biochemical changes accompanying degreening in bananas and plantains at tropical temperatures. Aspects Appl. Biol. 20: 83-84.
Google Scholar
27
-
UNICEF (2012). Committing to child survival. 40p.
Google Scholar
28
-
FAO/WHO (2004). Human vitamin and mineral requirements. FAO Ed., 361 p.
Google Scholar
29
-
Barikmo I., Ouattara F. & Oshaug A. (2004). Table de composition d’aliments du Mali, Oslo Mai 2004.
Google Scholar
30
-
Vauzour D., Rodriguez-Mateos A., Corona G., Oruna-Concha M.J. & Spencer J.P.E. (2010). Polyphenols and human health: prevention of disease and mechanisms of action. Nutrients, 2: 1106-1131.
Google Scholar
31
-
Lonn E., Yusuf S., Hoogwerf B., Pogue J., Yi Q., Zinman B., Bosch J., Dagenais G. & Mann J.F. (2005). Effects of long-term vitamin E supplementation on cardiovascular events and cancer: a randomized controlled trial. JAMA; 293: 1338-47.
Google Scholar
32
-
Adrian J., Rabache M. et Frangne R. (1982). Eventualité d’une réaction de Maillard dans les boissons, Sci. Aliments, 2 (hors-série 1): 1-11.
Google Scholar
33
-
Abdou B. A. (2009). Contribution à l’étude du développement d’un aliment fonctionnel à base d’épices du Cameroun: Caractérisation physico-chimique et fonctionnelle. Docteur de L’INPL et Docteur Ph D de l’Université de Ngaoundéré. Spécialité: Procédés Biotechnologiques et Alimentaires. 228p: 102-105.
Google Scholar
34
-
Okonwu K., Akonye L.A. & Mensah S.I. (2018). Nutritional Composition of Telfairia occidentalis Leaf Grown in Hydroponic and Geoponic Media. J. Appl. Sci. Environ. Manage. 22: (2) 259-265.
Google Scholar
35
Most read articles by the same author(s)
-
Abdoulaye Toure,
Yadé Réné Soro,
Armel Fabrice Zoro,
Ledjou Arnaud Kogbou Djah,
Adama Coulibaly,
Assessment of Cashew Apple Juice on Fermentative Activity of Two Lactic Bacteria in Production of Yoghurt , European Journal of Agriculture and Food Sciences: Vol. 2 No. 3 (2020) -
Ahoussi Pascal Boni,
Abdoulaye Toure,
Ahmont Landry Claude Kablan,
Armel Fabrice Zoro,
Lessoy Yves Thierry Zoue,
Sensory, Micrographic and Physico-chemical Characterization of Kernel Almond Flour of Two Varieties of Mangoes Grown in Northern Côte d'Ivoire , European Journal of Agriculture and Food Sciences: Vol. 4 No. 5 (2022) -
Sara Atchoumtcho Coulibaly,
Abdoulaye Toure,
Ouayogode Aminata Akoubet,
Richmond Jean-François Kablan,
N'dri Marcelline Adiko,
Ahmont Landry Claude Kablan,
Nutrient Parameters of Mangoes Produced in the Departments of Korhogo and Sinématiali, Northern Côte d’Ivoire , European Journal of Agriculture and Food Sciences: Vol. 7 No. 4 (2025)