Peleforo Gon Coulibaly University, Côte d’Ivoire
Peleforo Gon Coulibaly University, Côte d’Ivoire
Félix Houphouet-Boigny University, Côte d’Ivoire
Peleforo Gon Coulibaly University, Côte d’Ivoire
Félix Houphouet-Boigny University, Côte d’Ivoire
Félix Houphouet-Boigny University, Côte d’Ivoire
* Corresponding author

Article Main Content

Pulp of Kent mango (Mangifera indica L.) grown in Côte d’Ivoire was analyzed for it post-harvest profiles in polyphenols, vitamins and amino acids. HPLC method was used for determination of polyphenols, vitamins and amino acids in pulp during 12 post-harvest days. The results revealed the reduction of the polyphenols composition in Kent mango pulp from harvest until the 12th day except gallic acid. This composition is reduced from 9.63±0.52 to 4.31±0.00 mg/100g (gallotanins); 3.22±0.10 to 1.55±0.05 mg/100g (mangiferin); 8.99±0.57 to 2.57±0.00 mg/100g (quercetin) and 3.38±0.34 to 0.92±0.07 mg/100g (isoquercetin). Gallic acid composition increased from 20.39±0.40 to 22.60±0.31 after 6 post-harvest days. The gallic acid content is reduced from 21.34±0.02 to 13.46±0.30 mg/100g between the 6 and 12 post-harvest days. For vitamins of mango pulp, provitamin A content increases from 2nd day (28.03±0.93 µg/100g) to 12th day (50.17±1.12µg/100g). Vitamin B3, B5, and K are stable from 2nd to 4th day before respectively decreased from 1.23±0.06 to 0.10±0.02 mg/100g (vitamin B3); 0.19±0.02 to 0.04±0.01mg/100g (vitamin B5) and 5.00±0.81 to 2.66±0.47µg/100g (vitamin K) between the 6th and 12th day. Vitamins B6 and E contents remained stable during the 6 post-harvest days before decreased until the 12th day from 0.15±0.01 to 0.02±0.01 and 0.63±0.04 to 0.24±0.09 respectively. Concerning amino acids contents, alanin and glutamic acid decreased respectively from 70.66±0.93 to 40.40 mg/100g and 82.33±0.15 to 48.66±0.33 mg/100g between the 2nd and 12th post-harvest days. Valin and tryptophan contents increased respectively from 33.00 to 42.33 mg/100g and 8.33 to 16 mg/100g from the 2nd to 8th day unlike leucin and methionine which decreased during the 12 days of ripening. This study showed that pulp of Kent mango of Côte d’Ivoire has interesting polyphenols, vitamins and amino acids profiles during the 6th and 8th post-harvest day. To our knowledge, this is the first time that a similar study has been carried out on the evolution of polyphenols, vitamins and amino acids content in Kent mango pulp during it post-harvest ripening.

References

  1. Ajila C.M., Bhat S.G. & Prasada Rao U.J.S. (2007). Valuable components of raw and ripe peels from two Indian mango varieties. Food Chemistry, 102: 1006-1011.
     Google Scholar
  2. Rincon A.M. & Kerr W.L. (2010). Influence of osmotic dehydration, ripeness and frozen storage on physicochemical properties of mango. Journal of Food Processing and Preservation. 34(5): 887-903.
     Google Scholar
  3. Sogi D., Siddiq M., Roidoung S & Dolan K.D. (2012). Total Phenolics, Carotenoids, Ascorbic Acid, and Antioxidant Properties of Fresh-cut Mango. Journal of Food Science. 77(11).
     Google Scholar
  4. Djioua T. (2010). Amélioration de la conservation des mangues 4ème gamme par application de traitements thermiques et utilisation d’une conservation sous atmosphère modifiée. Thèse 170p.
     Google Scholar
  5. Ambriz-Perez D.L., Leyva-Lopez N., Gutierrez-Grijalva E.P. & Heredia J.B. (2016). Phenolic compounds: Natural alternative in inflammation treatment. A review. Cogent Food Agric. 2(1).
     Google Scholar
  6. Han X., Shen T. & Lou H. (2007). Dietary polyphenols and their biological significance. Int J Mol Sci. 8(9):950.
     Google Scholar
  7. Kang N.J., Shin S.H., Lee H.J. & Lee K.W. (2011). Polyphenols as small molecular inhibitors of signaling cascades in carcinogenesis. Pharmacol Ther.130(3):310–24.
     Google Scholar
  8. Pérez-Jiménez J., Neveu V., Vos F. & Scalbert A. (2010). Identification of the 100 richest dietary sources of polyphenols: an application of the Phenol-Explorer database. Eur J Clin Nutr. 64:S112–20.
     Google Scholar
  9. Saadi O. (1962). Les vitamines. Cours 12p.
     Google Scholar
  10. Nutrifacts (2015). Vitamines. Edition Nestlé. 16p.
     Google Scholar
  11. INRA (2012). L’avenir des légumineuses dans l’alimentation humaine. 22p.
     Google Scholar
  12. Stewart G.R. & Lahrer F. (1980). Accumulation of amino acids and related compounds in relation to environmental stress.In: Stumpf P.K. et Conn E.E., eds. The biochemistry of plants. New York, Academic Press, v.4, 609-635.
     Google Scholar
  13. Fowden L. (1978). Non-protein nitrogen compounds: toxicity and antagonistic action in relation to amino protein synthesis. In: NORTON G., ed. Plant proteins. London, Butterworths, 109-115.
     Google Scholar
  14. Couplan F. (2012). Lettre d’information n°8. 10p.
     Google Scholar
  15. Alanon M.E., Palomo I., Rodriguez L., Fuentes E., Arraez-Roman D and Segura-Carretero A. (2019). Antiplatelet Activity of Natural Bioactive Extracts from Mango (Mangifera Indica L.) and its ByProducts. Antioxidants (Basel). 8(11): 517.
     Google Scholar
  16. Singleton V.L., Orthofer R. & Lamuela-Raventos R.M. (1999). Analysis of total phenols and other oxydant substrates and antioxydants by means of Folinciocalteu reagent. Methods Enzymol., 299: 152-178.
     Google Scholar
  17. N’ganzoua K.R., Camara B & Dick E. (2010). Evaluation des changements physico-chimiques caractérisant le mûrissement au cours de l’entreposage de trois variétés de bananes Musa spp. (AAB, cv. Corne 1; AAA, cv. Poyo et AA, cv. Figue Sucrée). Sciences & Nature. 7(2): 155 – 163.
     Google Scholar
  18. Yahiaoui K., Ouahiba B., Arab K & Benchabane A. (2021). Évolution de la fraction lipidique et protéique au cours de la maturation de la datte Deglet-Nour. Revue Nature et Technologie, 13 (1) (2021): 65-71.
     Google Scholar
  19. Duchene-Massias A.(2015). Valorisation fonctionnelle et antioxydante des épidermes de pommes Golden Delicious. Thèse. 231p.
     Google Scholar
  20. Karamaæ M., Kosiñska A. & Pegg R.B. (2006). Content of gallic acid in selected plant extracts. J Food Nutr Sci. 15(1):55–8.
     Google Scholar
  21. Renard C.M.G.C., Dupont N. & Guillermin P. (2007). Concentrations and characteristics of procyanidins and other phenolics in apples during fruit growth. Phytochemistry 68: 1128–1138.
     Google Scholar
  22. Bernillon S., Guyot S., Renard C.M.G.C. (2004). Detection of phenolic oxidation products in cider apple juice by high-performance liquid chromatography electrospray ionisation ion trap mass spectrometry. Rapid Commun. Mass Spectrom 18: 939–943.
     Google Scholar
  23. Robards K., Prenzler P.D., Tucker G., Swatsitang P., Glover W. (1999). Phenolic compounds and their role in oxidative processes in fruits. Food Chemistry 66: 401-436.
     Google Scholar
  24. Shashank K. & Pandey A.K. (2013). Chemistry and biological activities of flavonoids. Hindawi Sci World J. (12):533–48.
     Google Scholar
  25. Matile P. (1980). Catabolism of chlorophyll: involvement of peroxydase. Z. Pflanzenphysiol. 99: 475-478.
     Google Scholar
  26. Martinoia E., Dalling M.J. & Matile P. (1982). Catabolism of chlorophyll, demonstration of chloroplast localised peroxydative and oxydative activities. Z. Pflanzenphysiol. 109: 269-279.
     Google Scholar
  27. Blackbourn H.D., John P. & Jeger M.J. (1989). Ultrastructural and biochemical changes accompanying degreening in bananas and plantains at tropical temperatures. Aspects Appl. Biol. 20: 83-84.
     Google Scholar
  28. UNICEF (2012). Committing to child survival. 40p.
     Google Scholar
  29. FAO/WHO (2004). Human vitamin and mineral requirements. FAO Ed., 361 p.
     Google Scholar
  30. Barikmo I., Ouattara F. & Oshaug A. (2004). Table de composition d’aliments du Mali, Oslo Mai 2004.
     Google Scholar
  31. Vauzour D., Rodriguez-Mateos A., Corona G., Oruna-Concha M.J. & Spencer J.P.E. (2010). Polyphenols and human health: prevention of disease and mechanisms of action. Nutrients, 2: 1106-1131.
     Google Scholar
  32. Lonn E., Yusuf S., Hoogwerf B., Pogue J., Yi Q., Zinman B., Bosch J., Dagenais G. & Mann J.F. (2005). Effects of long-term vitamin E supplementation on cardiovascular events and cancer: a randomized controlled trial. JAMA; 293: 1338-47.
     Google Scholar
  33. Adrian J., Rabache M. et Frangne R. (1982). Eventualité d’une réaction de Maillard dans les boissons, Sci. Aliments, 2 (hors-série 1): 1-11.
     Google Scholar
  34. Abdou B. A. (2009). Contribution à l’étude du développement d’un aliment fonctionnel à base d’épices du Cameroun: Caractérisation physico-chimique et fonctionnelle. Docteur de L’INPL et Docteur Ph D de l’Université de Ngaoundéré. Spécialité: Procédés Biotechnologiques et Alimentaires. 228p: 102-105.
     Google Scholar
  35. Okonwu K., Akonye L.A. & Mensah S.I. (2018). Nutritional Composition of Telfairia occidentalis Leaf Grown in Hydroponic and Geoponic Media. J. Appl. Sci. Environ. Manage. 22: (2) 259-265.
     Google Scholar


Most read articles by the same author(s)