##plugins.themes.bootstrap3.article.main##

Beer is an ancient beverage that is more popular today than ever. Craft beer has cemented itself as a staple segment of the larger beer market. Microbreweries and brewpubs make up a large portion of craft beer producers. These smaller scale producers have an increased risk of their beer becoming contaminated by unwanted microorganisms. Although beer is typically considered a microbiologically stable product, beer can still become contaminated with specific bacterial species that are capable of evading beer’s intrinsic antibacterial properties and the processing hurdles of brewing that lower bacterial contamination risk. Research thus far is lacking in protecting the growing community of microbreweries and brewpubs. These producers face a unique set of challenges in protecting their products that larger breweries do not. Solutions need to be identified by new research. This article looks to summarize the current knowledge regarding bacterial contaminations in breweries to facilitate research in the future.

References

  1. Alcoholic beverages market size, share and report 2022–2027 [Internet]. Imarcgroup.com. [cited 2023 Feb 9]. Available from: https://www.imarcgroup.com/alcoholic-beverages-market.
     Google Scholar
  2. Nelson M. The barbarian’s beverage: A history of beer in ancient Europe. London, England: Routledge; 2008.
     Google Scholar
  3. Hornsey IS. A history of beer and brewing. Cambridge, England. Royal Society of Chemistry; 2007.
     Google Scholar
  4. Ward-Perkins B. Fall of Rome, the: And the end of civilization. Cary, NC: Oxford University Press; 2006.
     Google Scholar
  5. Sewell SL. The spatial diffusion of beer from its Sumerian origins to today. In: Patterson m h-p, editor. The Geography of Beer. New York, NY: Springer; 2014. p. 23–9.
     Google Scholar
  6. Filmer R. Hops and hop picking. London, England: Shire Publications; 1982.
     Google Scholar
  7. Verberg S. The rise and fall of gruit. 2018 [cited 2023 Feb 9]; Available from: https://www.academia.edu/35704222/.
     Google Scholar
  8. Now C. Beer, yeast, and Louis Pasteur [Internet]. Circulating Now from NLM. 2014 [cited 2023 Feb 9]. Available from: https://circulatingnow.nlm.nih.gov/2014/01/24/beer-yeast-and-louis-pasteur/.
     Google Scholar
  9. Fienberg SE LN. William Sealy Gosset. In: Heyde CC, Seneta E, Crepel P, Fienberg SE, Gani J, editor. Statisticians of the Centuries. New York, NY: Springer Science+Business Media; 2001. p. 312–7.
     Google Scholar
  10. The New Brewer [Internet]. Brewers Association. 2021 [cited 2023 Feb 9]. Available from: https://www.brewersassociation.org/the-new-brewer/may-june-2021/.
     Google Scholar
  11. Watson B. U.S. brewery count tops 3,000 [Internet]. Brewers Association. 2014 [cited 2023 Feb 9]. Available from: https://www.brewersassociation.org/insights/us-brewery-count-tops-3000/.
     Google Scholar
  12. Leistner L. Food preservation by combined methods. Food Res Int [Internet]. 1992; 25(2):151–8. Available from: http://dx.doi.org/10.1016/0963-9969(92)90158-2.
     Google Scholar
  13. Leistner L. Basic aspects of food preservation by hurdle technology. Int J Food Microbiol [Internet]. 2000;55(1–3):181–6. Available from: http://dx.doi.org/10.1016/s0168-1605(00)00161-6.
     Google Scholar
  14. Vriesekoop F, Krahl M, Hucker B, Menz G. 125thAnniversary Review: Bacteria in brewing: The good, the bad and the ugly: Bacteria in brewing. J Inst Brew [Internet]. 2012;118(4):335–45. Available from: http://dx.doi.org/10.1002/jib.49.
     Google Scholar
  15. O’Mahony A, O’Sullivan T, Walsh Y, Vaughan A, Maher M, Fitzgerald GF, et al. Characterization of antimicrobial producing lactic acid bacteria from malted barley. J Inst Brew [Internet]. 2000; 106(6):403–10. Available from: http://dx.doi.org/10.1002/j.2050-0416.2000.tb00531.x.
     Google Scholar
  16. An introduction to commercial sterility [Internet]. tetrapak.com. 2006 [cited 2022 Jan 30]. Available from: https://www.tetrapak.com/content/dam/tetrapak/media-box/global/en/documents/an-introduction-to-commerical-sterility.pdf.
     Google Scholar
  17. Jaskula B, Kafarski P, Aerts G, De Cooman L. A kinetic study on the isomerization of hop alpha-acids. J Agric Food Chem [Internet]. 2008; 56(15):6408–15. Available from: http://dx.doi.org/10.1021/jf8004965.
     Google Scholar
  18. Srinivasan V, Goldberg D, Haas GJ. Contributions to the antimicrobial spectrum of hop constituents. Econ Bot [Internet]. 2004;58(sp1): S230–8. Available from: http://dx.doi.org/10.1663/0013-0001(2004)58[s230:cttaso]2.0.co;2.
     Google Scholar
  19. Michel M, Cocuzza S, Biendl M, Peifer F, Hans S, Methner Y, Pehl F, Back W, Jacob F, Hutzler M. The impact of different hop compounds on the growth of selected beer spoilage bacteria in beer. Journal of the Institute. 2020; 126:354–61.
     Google Scholar
  20. Sakamoto K, Konings WN. Beer spoilage bacteria and hop resistance. Int J Food Microbiol [Internet]. 2003;89(2–3):105–24. Available from: http://dx.doi.org/10.1016/s0168-1605(03)00153-3.
     Google Scholar
  21. Behr J, Gänzle MG, Vogel RF. Characterization of a highly hop-resistant Lactobacillus brevis strain lacking hop transport. Appl Environ Microbiol [Internet]. 2006;72(10):6483–92. Available from: http://dx.doi.org/10.1128/AEM.00668-06.
     Google Scholar
  22. Simpson WJ. Cambridge prize lecture. Studies on the sensitivity of lactic acid bacteria to hop bitter acids. J Inst Brew [Internet]. 1993;99(5):405–11. Available from: http://dx.doi.org/10.1002/j.2050-0416.1993.tb01180.x.
     Google Scholar
  23. Rodríguez-Saavedra M, González de Llano D, Moreno-Arribas MV. Beer spoilage lactic acid bacteria from craft brewery microbiota: Microbiological quality and food safety. Food Res Int [Internet]. 2020;138(Pt A):109762. Available from: http://dx.doi.org/10.1016/j.foodres.2020.109762.
     Google Scholar
  24. Behr J, Vogel RF. Mechanisms of hop inhibition: hop ionophores. J Agric Food Chem [Internet]. 2009;57(14):6074–81. Available from: http://dx.doi.org/10.1021/jf900847y.
     Google Scholar
  25. Ayub ZH. Plate heat exchanger literature survey and new heat transfer and pressure drop correlations for refrigerant evaporators. Heat Trans Eng [Internet]. 2003;24(5):3–16. Available from: http://dx.doi.org/10.1080/01457630304056.
     Google Scholar
  26. Usda.gov. [cited 2023 Feb 9]. Available from: https://www.fsis.usda.gov/food-safety/safe-food-handling-and-preparation/food-safety-basics/danger-zone-40f-140f.
     Google Scholar
  27. Wray E. Reducing microbial spoilage of beer using pasteurization. In: Hall AE, editor. Brewing microbiology, managing microbes, ensuring quality and valorizing waste. Cambridge, England: Woodhead Publishing; 2015. p. 457–9.
     Google Scholar
  28. Kitis M. Disinfection of wastewater with peracetic acid: a review. Environ Int [Internet]. 2004;30(1):47–55. Available from: http://dx.doi.org/10.1016/S0160-4120(03)00147-8.
     Google Scholar
  29. Block SS. Disinfection, sterilization, and preservation. 5th ed. Philadelphia, PA: Lippincott Williams and Wilkins; 2001.
     Google Scholar
  30. Identification 1., San S. Safety Data Sheet [Internet]. Fivestarchemicals.com. [cited 2023 Feb 9]. Available from: https://fivestarchemicals.com/mwdownloads/download/link/id/455/.
     Google Scholar
  31. Suzuki K. 125th anniversary review: Microbiological instability of beer caused by spoilage bacteria. J Inst Brew [Internet]. 2011;117(2):131–55. Available from: http://dx.doi.org/10.1002/j.2050-0416.2011.tb00454.x.
     Google Scholar
  32. Suzuki K. Gram-positive bacteria in brewing. In: Hill AE, editor. Brewing microbiology managing microbes, ensuring quality, and valorizing waste. Cambridge, England: Woodhead Publishing; 2015. p. 141–73.
     Google Scholar
  33. Schneiderbanger J. Occurrence, detection, characterization, and description of selected beer-spoilage lactic acid bacteria. Technical university of Munich; 2019.
     Google Scholar
  34. Suzuki K, Asano S, Iijima K, Kitamoto K. Sake and beer spoilage lactic acid bacteria-A review. J Inst Brew [Internet]. 2008;114(3):209–23. Available from: http://dx.doi.org/10.1002/j.2050-0416.2008.tb00331.x.
     Google Scholar
  35. Jespersen L, Jakobsen M. Specific spoilage organisms in breweries and laboratory media for their detection. Int J Food Microbiol [Internet]. 1996;33(1):139–55. Available from: http://dx.doi.org/10.1016/0168-1605(96)01154-3.
     Google Scholar
  36. Salminen S, von Wright A, Lahtinen S, Ouwehand AC, editors. Lactic acid bacteria: Microbiological and functional aspects, fourth edition. 4th ed. Boca Raton, FL: CRC Press; 2011.
     Google Scholar
  37. Asano S, Iijima K, Suzuki K, Motoyama Y, Ogata T, Kitagawa Y. Rapid detection and identification of beer-spoilage lactic acid bacteria by microcolony method. J Biosci Bioeng [Internet]. 2009;108(2):124–9. Available from: http://dx.doi.org/10.1016/j.jbiosc.2009.02.016.
     Google Scholar
  38. Schurr BC, Behr J, Vogel RF. Detection of acid and hop shock induced responses in beer spoiling Lactobacillus brevis by MALDI-TOF MS. Food Microbiol [Internet]. 2015; 46:501–6. Available from: http://dx.doi.org/10.1016/j.fm.2014.09.018.
     Google Scholar
  39. Inoue T, Yamamoto Y. Diacetyl, and beer fermentation. Proc Annu Meet - Am Soc Brew Chem [Internet]. 1970;28(1):198–208. Available from: http://dx.doi.org/10.1080/00960845.1970.12006981.
     Google Scholar
  40. Snauwaert I, Stragier P, De Vuyst L, Vandamme P. Comparative genome analysis of Pediococcus damnosus LMG 28219, a strain well-adapted to the beer environment. BMC Genomics [Internet]. 2015;16(1):267. Available from: http://dx.doi.org/10.1186/s12864-015-1438-z.
     Google Scholar
  41. Beales N. Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: A review. Compr Rev Food Sci Food Saf [Internet]. 2004;3(1):1–20. Available from: http://dx.doi.org/10.1111/j.1541-4337.2004.tb00057.x.
     Google Scholar
  42. Riedel R, Dünzer N, Maximilian M, Jacob F, Hutzler M. Beer enemy number one: genetic diversity, physiology, and biofilm formation of Lactobacillus brevis. Journal of the institute of br. 2019; 125:250–60.
     Google Scholar
  43. Timke M, Wang-Lieu NQ, Altendorf K, Lipski A. Identity, beer spoiling and biofilm forming potential of yeasts from beer bottling plant associated biofilms. Antonie Van Leeuwenhoek [Internet]. 2008;93(1–2):151–61. Available from: http://dx.doi.org/10.1007/s10482-007-9189-8.
     Google Scholar
  44. Jevons AL, Quain DE. Draught beer hygiene: use of microplates to assess biofilm formation, growth, and removal. J Inst Brew [Internet]. 2021;127(2):176–88. Available from http://dx.doi.org/10.1002/jib.637.
     Google Scholar
  45. Maifreni M, Frigo F, Bartolomeoli I, Buiatti S, Picon S, Marino M. Bacterial biofilm as a possible source of contamination in the microbrewery environment. Food Control [Internet]. 2015; 50:809–14. Available from: http://dx.doi.org/10.1016/j.foodcont.2014.10.032.
     Google Scholar
  46. Manzano M, Iacumin L, Vendrames M, Cecchini F, Comi G, Buiatti S. Craft beer microflora identification before and after a cleaning process. J Inst Brew [Internet]. 2011;117(3):343–51. Available from: http://dx.doi.org/10.1002/j.2050-0416.2011.tb00478.x.
     Google Scholar