Corn Yield in Monoculture and Intercropped with Cover Plants and Aggregates Stability
Article Main Content
The cultivation of corn intercropped with cover crops has been increasing in the western region of Paraná. However, more technical information about this type of cultivation is needed. Thus, the present study aims to evaluate the yield of corn intercropped with brachiaria and crotalaria and its effect on aggregate stability and soil consistency. The experiment was carried out at the experimental station of Cooperativa Agrícola Mista Rondon (Copagril), in the city of Marechal Cândido Rondon. The experimental design was randomized blocks with 8 replications. There were six treatments for corn cultivation (T1) Corn monoculture (control), (T2) Corn intercropped with Brachiaria (Brachiaria ruzizienses), (T3) Brachiaria in monoculture, (T4) Crotalaria spectabilis (Crotalaria spectabilis) in monoculture, (T5) Corn intercropped with Crotalaria, (T6) Black oats (Avena sativum) in monoculture. Corn yield in intercropping, dry matter added to the soil, aggregate stability and soil consistency were evaluated. The yield of corn intercropped with cover crops was similar to that of corn in monoculture. The cultivation of Brachiaria ruziziensis in monoculture or intercropped with corn produced a large amount of straw and favored soil aggregation. Therefore, the intercropping systems are recommended for the improvement of soil physical properties and the conservation of soil.
References
-
A. Nunes, M.L. Bartz, I. Mello, J.K. Bortoluzzi, G. Roloff, R.F. Llanillo, L. Canalli, C.A.R. Wandscheer and R. Ralisch. No-till System Participatory Quality Index in land management quality assessment in Brazil. Eur. J. Soil Sci., 2020; 71(6):974-987. Available online: https://doi.org/10.1111/ejss.12943.
Google Scholar
1
-
H. Debiasi et al., Alternativas para diversificação de sistemas de produção envolvendo a soja no Norte do Paraná, Embrapa Soja, Londrina, pp. 55. 2017. Available online: file:///C:/Users/Edileusa/Dropbox/My%20PC%20(DESKTOP-24A92MD)/Desktop/Doc398.pdf. (accessed on 27 jan. 2021).
Google Scholar
2
-
E.P. Seidel, K.A. Anschau, M.C. Mottin, A.P. Vergen and M.A. Franscziskowski. Physical properties of soil and productivity of maize intercropped with different cover plants, Afr. J. Agric. Res., 2017;12(39):2940-2945.
Google Scholar
3
-
P.E.A. Salomão, W. Kriebel, A.A. Santos dos and A.C.E. Martins. A importância do sistema de plantio direto na palha para reestruturação do solo e restauração da matéria orgânica. Res., Soc. Dev., 2020;9(1). Available online:
Google Scholar
4
-
https://rsdjournal.org/index.php/rsd/article/view/1870/1533.
Google Scholar
5
-
G.H. Merten, A.G. Araújo, R.C.M. Biscaia, G.M.C, Barbosa and O. Conte, “No-till surface runoff and soil losses in southern Brazil”, Soil Till Res., 2015;152:85–93.
Google Scholar
6
-
O.F.L. Filho. Sustentabilidade na agricultura com adubos verdes: uma obra completa à disposição da sociedade brasileira. Embrapa, Brasília, 2015. Available online: https://www.embrapa.br/busca-de-noticias/-/noticia/3232661/artigo (accessed on 04 de maio de 2019).
Google Scholar
7
-
D.N.A. Ligasa and D. Lineal. Produtividade de grãos de milho em consórcio com Crotalaria spectabilis na safrinha de dois anos agrícolas”, 14º Seminário Nacional de milho safrinha, pp. 502-507, 2016.
Google Scholar
8
-
M.R. Moitinho, C. Fernandes, P.V. Truber, A.V. Marcelo, J.E. Corá and E.S. Bicalho. Arbuscular mycorrhizal fungi and soil aggregation in a no-tillage system with crop rotation. J. Soil Sci. Plant, 2020;163:482-491. Available online: https://doi.org/10.1002/jpln.201900456.
Google Scholar
9
-
E.B. Wutke, E.J. Ambrosano, L.F. Razera, P.F. Medina, L.H. Carvalho and H. Kikuti. Bancos Comunitários de Sementes de Adubos Verdes: Informações Técnicas, 2007. MAPA, Brasília, Brasil, pp. 20.
Google Scholar
10
-
C.L.P. Abade, E.M.R. Pedrosa, T.F.S. Vicente, D.A.H.S. Leitão, A.A.A. Montenegro, M.M. Rolim and L.M.P. Guimarães. Variação espacial de fitonematoides em área de cultivo de feijoeiro após erradicação de goiabeiras. Nematropica, 2016;46(2):172-181.
Google Scholar
11
-
G.L. Gerra, T. Becquer, P.R.S. Vendrame, S. Galbeiro, O.R. Brito, L.D.F. Silva, J.C. Felix, M.R. Lopes, E.L. Henz and I.Y. Mizubuti. Nutritional evaluation of Brachiaria brizantha cv. Marandu cultivated in soils developed from basalt and sandstone in the state of Paraná. Semina, 2019;40(1). Available online: < http://www.uel.br/revistas/uel/index.php/semagrarias/article/view/33924.
Google Scholar
12
-
S.M. Oliveira, R.E.M. Almeida, C.J. Pierozan, A.F.B. Reis, L.F.N. Souza and J.L. Favarin, “Contribuição de milho consorciado com espécies de Brachiaria na ciclagem de nutrientes”, PAT, 2019; 49. Available online:
Google Scholar
13
-
<https://www.scielo.br/j/pat/a/dW65XBtVhXLJqHchTX5f8Ms/?lang=en>.
Google Scholar
14
-
P.A. Makino, G. Ceccon, L.M. Ribeiro and F. Ceccon. Agronomic performance and photosynthetically active radiation intercepted by maize intercropped with Brachiaria. Neotropical, 2019;6(4):42-48. Available online: https://www.alice.cnptia.embrapa.br/bitstream/doc/1118358/1/36935.pdf.
Google Scholar
15
-
A. T. Takasu et al. Intercropping of grasses or legume species in maize crop in the cerrado. RBMS, 2020;19:e1096. DOI: Available online: https://doi.org/10.18512/rbms2020v19e1096.
Google Scholar
16
-
G.S.F. Silva, A.S. Andrade Junior, M.J. Cardoso and R.B. Araujo Neto. Soil water dynamics and yield in maize and Brachiaria ruziziensis intercropping. PAT, 2020; 50. Available online: https://www.scielo.br/j/pat/a/6v4fkj8QvG3yhPcfMbrMKCb/?lang=en&format=pdf.
Google Scholar
17
-
G. Ceccon, G. Concenco, E. Borghi, A.P. Duarte, A.F. Silva, C. Kappes and R.E.M. Almeida, “Implantação e Manejo de Forrageira em Consórcio com Milho”, Embrapa, Dourados, 2015:34.
Google Scholar
18
-
C. P. Cagna, Z.K.P. Calábria, O. Guedes Filho, L.P. Pacheco and T.J.A. Silva. Structural properties of soil in maize and forage grass intercropping under no-tillage in the brazilian cerrado. Eng. Agríc., 2019;39(4).
Google Scholar
19
-
J.S. Rosset, M. C. Lana, M. Gervasio Pereira, J.A. Schiavo, L. Rampim and M.V.M. Sarto. Organic matter and soil aggregation in agricultural systems with different adoption times. Semina, 2019;40(6):3443-3460. DOI: 10.5433/1679-0359.2019v40n6Supl3p3443.
Google Scholar
20
-
C.A. Alvarez, J.L. Stape, P.C. Sentelhas, J.L.M. Gonçalves and G. Sparovek. Köppens’s climate classification map for Brazil”, Meteorologische Zeitschrift, Sttutgart, 2013;22(1):711-728.
Google Scholar
21
-
R.E. Yoder. A direct method of aggregate analysis of soil and a study of the physical nature of erosion losses. J. Agron., 2013;28:337-351.
Google Scholar
22
-
Secretaria da Agricultura e Abastecimento do Paraná: Seab, 2020 Available online: http://www.agricultura.pr.gov.br/deral/ProducaoAnual. Acesso em 29 de agosto de 2020.
Google Scholar
23
-
A.B. Torino, L.F. Nascimento Junior, M.F. Brito, J.D.P. Lima, W.G. Golçalves, K.A. Pinho Cost and, E.C. Severiano. Agronomic performance of maize and Brachiaria grasses cultivated at monocropping and intercropping in a compacted Latossolo. Aust. J. Crop Sci., 2020;14(9):1533-1540. Available online: < https://www.cropj.com/torino_14_9_2020_1533_1540.pdf> doi: 10.21475/ajcs.20.14.09.p2773.
Google Scholar
24
-
G. Ceccon, J.F. Silva, P.A. Makino, A.L. Neto. Consórcio milho-braquiária com densidades populacionais da forrageira no centro-sul do Brasil, 2018;17(1):157-167. Available online: < file:///C:/Users/Edileusa/Dropbox/My%20PC%20(DESKTOP-24A92MD)/Desktop/751-8647-1-PB.pdf>(2007).
Google Scholar
25
-
B.C. Nwachukwu, A.S. Ayangbenro and O.O. Babalola. Elucidating the Rhizosphere Associated Bacteria for Environmental Sustainability. Agriculture, 2021;11(75). Available online: < https://doi.org/10.3390/agriculture11010075>.
Google Scholar
26
-
M. Kirsten, R. Mikutta, C. Vogel, A. Thompson, C. Mueller, D.N. Kimaro, H.L.T. Bergsma, K.H. Feger and K. Karsten. Iron oxides and aluminous clays selectively control soil carbon storage and stability in the humid tropics. Scientific Reports, 2021;11(5076). Available online: < https://www.nature.com/articles/s41598-021-84777-7>.
Google Scholar
27