University of Lisbon, Portugal
* Corresponding author
Universidade Pedagógica, Mozambique
Polytechnic University, Mozambique
Lúrio University, Mozambique
EUniversidade Eduardo Mondlane, Mozambique
Coimbra University, Portugal

Article Main Content

Food safety is a major concern worldwide. Food-crop contamination by fungi and mycotoxins is a common occurrence causing persistent exposure that raises critical health problems and economic losses. Food and feeds are frequently tainted by multiple contaminants, such as trace elements, heavy metals, dioxins, pesticides, and mycotoxins. Most African countries lack the ability to enforce international food safety regulations and face frequent rejection of exportable raw food materials leading to financial burden and increased intramural consumption of contaminated products. The literature on mycotoxins is extremely vast, investigating or reporting cellular mechanisms and toxicity, associated pathology and animal performance, effects of these compounds on general malnutrition and on human health. However, different sampling and analytical methods for research has hindered progress, data collection and interpretation. Innovative and promising commercial solutions of technological biocontrol have been approved in few African countries but may not be the sole and long-lasting solution for the management of mycotoxins. We describe an economic burden in Mozambique of naturally occurring toxigenic fungi moulds in banana plantations, and a public health impact from non-rotating crops of cassava, groundnutsб and maize. Finally, we mention our moderate role in surveillance and monitoring of mycotoxins in family smallholder farmers, informal markets, and cooperatives.

References

  1. FAO, “The State of Food and Agriculture Innovation in family farming,” Rome, 2014.
     Google Scholar
  2. FAO Regional Office for Europe and Central Asia, “FAO: Family farms are key to sustainable future in Europe and Central Asia,” News, 2019. http://www.fao.org/europe/news/detail-news/en/c/1184916/ (accessed Aug. 02, 2021).
     Google Scholar
  3. K. Sibhatu and M. Qaim, “Rural food security, subsistence agriculture, and seasonality,” PLoS One, vol. 12, no. 10, Oct. 2017, doi: 10.1371/JOURNAL.PONE.0186406.
     Google Scholar
  4. Congressional Research Service, “U.S. Assistance to Sub-Saharan Africa: An Overview,” 2020. Accessed: Aug. 02, 2021. [Online]. Available: https://crsreports.congress.gov.
     Google Scholar
  5. B. Njobe and S. Kaaria, “Women and Agriculture The Untapped Opportunity in the Wave of Transformation Co-Conveners,” Dakar, 2015. Accessed: Aug. 02, 2021. [Online]. Available: https://www.afdb.org/fileadmin/uploads/afdb/Documents/Events/DakAgri2015/Women_and_Agriculture_The_Untapped_Opportunity_in_the_Wave_of_Transformation.pdf.
     Google Scholar
  6. FAO, The future of food and agriculture. Rome, 2017.
     Google Scholar
  7. E. Holt-Giménez, A. Shattuck, M. Altieri, H. Herren, and S. Gliessman, “We Already Grow Enough Food for 10 Billion People … and Still Can’t End Hunger,” J. os Sustain. Agric., vol. 36, no. 6, pp. 595–598, Jul. 2012, doi: 10.1080/10440046.2012.695331.
     Google Scholar
  8. E. and A. FAO, “Africa Regional Overview of Food Security and Nutrition 2020:Transforming food systems for affordable healthy diets,” 2021. doi: 10.4060/cb4831en.
     Google Scholar
  9. M. Kamle, D. K. Mahato, S. Devi, K. E. Lee, S. G. Kang, and P. Kumar, “Fumonisins: Impact on agriculture, food, and human health and their management strategies,” Toxins (Basel)., vol. 11, no. 6, 2019, doi: 10.3390/toxins11060328.
     Google Scholar
  10. M. Künzler, “How fungi defend themselves against microbial competitors and animal predators,” PLOS Pathog., vol. 14, no. 9, p. e1007184, Sep. 2018, doi: 10.1371/JOURNAL.PPAT.1007184.
     Google Scholar
  11. W. P. Pfliegler, I. Pócsi, Z. Győri, and T. Pusztahelyi, “The Aspergilli and Their Mycotoxins: Metabolic Interactions With Plants and the Soil Biota,” Front. Microbiol., vol. 10, p. 2921, Feb. 2020, doi: 10.3389/FMICB.2019.02921.
     Google Scholar
  12. G. Jard, T. Liboz, F. Mathieu, A. Guyonvarc’h, and A. Lebrihi, “Review of mycotoxin reduction in food and feed: from prevention in the field to detoxification by adsorption or transformation,” Food Addit. Contam. Part A. Chem. Anal. Control. Expo. Risk Assess., vol. 28, no. 11, pp. 1590–1609, Nov. 2011, doi: 10.1080/19440049.2011.595377.
     Google Scholar
  13. L. Claeys et al., “Mycotoxin exposure and human cancer risk: A systematic review of epidemiological studies,” Compr Rev Food Sci Food Saf, vol. 19, pp. 1449–1464, 2020, doi: 10.1111/1541-4337.12567.
     Google Scholar
  14. M. S. Azam, S. Ahmed, M. N. Islam, P. Maitra, M. M. Islam, and D. Yu, “Critical Assessment of Mycotoxins in Beverages and Their Control Measures,” Toxins 2021, Vol. 13, Page 323, vol. 13, no. 5, p. 323, Apr. 2021, doi: 10.3390/TOXINS13050323.
     Google Scholar
  15. M. E. Kimanya, M. N. Routledge, E. Mpolya, C. N. Ezekiel, C. P. Shirima, and Y. Y. Gong, “Estimating the risk of aflatoxin-induced liver cancer in Tanzania based on biomarker data,” PLoS One, vol. 16, no. 3, p. e0247281, Mar. 2021, doi: 10.1371/JOURNAL.PONE.0247281.
     Google Scholar
  16. C. Pocha and C. Xie, “Hepatocellular carcinoma in alcoholic and non-alcoholic fatty liver disease—one of a kind or two different enemies?,” Transl. Gastroenterol. Hepatol., vol. 4, no. 72, Oct. 2019, doi: 10.21037/tgh.2019.09.01.
     Google Scholar
  17. S. Komiyama, T. Yamada, N. Takemura, N. Kokudo, K. Hase, and Y. I. Kawamura, “Profiling of tumour-associated microbiota in human hepatocellular carcinoma,” Sci. Rep., vol. 11, no. 1, p. 10589, Dec. 2021, doi: 10.1038/s41598-021-89963-1.
     Google Scholar
  18. K. De Ruyck et al., “Mycotoxin exposure assessments in a multi-center European validation study by 24-hour dietary recall and biological fluid sampling,” Environ. Int., vol. 137, no. January, p. 105539, 2020, doi: 10.1016/j.envint.2020.105539.
     Google Scholar
  19. Z. Ren et al., “Progress in Mycotoxins Affecting Intestinal Mucosal Barrier Function,” Int. J. Mol. Sci., vol. 20, no. 2777, pp. 1–14, 2019, doi: 10.3390/ijms20112777.
     Google Scholar
  20. L. Cunha et al., “Hepatocellular Carcinoma: Clinical-pathological features and HIV infection in Mozambican patients,” Cancer Treat Res Commun, vol. 19, pp. 1–19, 2019, doi: 10.1016/j.ctarc.2019.100129.
     Google Scholar
  21. N. Schmit, S. Nayagam, M. R. Thursz, and T. B. Hallett, “The global burden of chronic hepatitis B virus infection: comparison of country-level prevalence estimates from four research groups,” Int. J. ofEpidemiology, vol. 50, no. 2, pp. 560–569, 2021, doi: 10.1093/ije/dyaa253.
     Google Scholar
  22. J. Ferrão, V. Bell, I. T. Chabite, and T. H. Fernandes, “Mycotoxins , Food and Health,” J. Nutr. Heal. Food Sci., vol. 5, no. 7, pp. 1–10, 2017.
     Google Scholar
  23. K. Hardy, “Paleomedicine and the Evolutionary Context of Medicinal Plant Use,” Rev. Bras. Farmacogn., vol. 31, pp. 1–15, 2021, doi: 10.1007/s43450-020-00107-4/Published.
     Google Scholar
  24. M. C. Manganyi and C. N. Ateba, “Untapped Potentials of Endophytic Fungi: A Review of Novel Bioactive Compounds with Biological Applications,” Microorganisms, vol. 8, no. 1934, pp. 1–25, 2020, doi: 10.3390/microorganisms8121934.
     Google Scholar
  25. J. W. Bennett and M. Klich, “Mycotoxins,” Clin. Microbiol. Rev., vol. 16, no. 3, pp. 497–516, 2003, doi: 10.1128/CMR.16.3.497.
     Google Scholar
  26. C. N. Ezekiel et al., “Traditionally Processed Beverages in Africa: A Review of the Mycotoxin Occurrence Patterns and Exposure Assessment,” Compr Rev Food Sci Food Saf, vol. 17, pp. 334–351, 2018, doi: 10.1111/1541-4337.12329.
     Google Scholar
  27. S. K. Mutiga et al., “Multiple Mycotoxins in Kenyan Rice,” Toxins (Basel)., vol. 3, no. 203, pp. 1–16, 2021, doi: 10.3390/toxins13030203.
     Google Scholar
  28. C. N. Ezekiel et al., “Fungal Diversity and Mycotoxins in Low Moisture Content Ready-To-Eat Foods in Nigeria,” Front. Microbiol., vol. 11, p. 615, Apr. 2020, doi: 10.3389/fmicb.2020.00615.
     Google Scholar
  29. I. Adekoya et al., “Awareness and Prevalence of Mycotoxin Contamination in Selected Nigerian Fermented Foods,” Toxins (Basel)., vol. 9, no. 11, p. 363, Aug. 2017, doi: 10.3390/TOXINS9110363.
     Google Scholar
  30. F. Aboagye-Nuamah, C. Kwoseh, and D. Maier, “Toxigenic mycoflora, aflatoxin and fumonisin contamination of poultry feeds in Ghana,” Toxicon, vol. 198, pp. 164–170, Jul. 2021, doi: 10.1016/J.TOXICON.2021.05.006.
     Google Scholar
  31. S. Van Rensburg, A. Kirsipuu, L. Coutinho, and J. Van Der Watt, “Circumstances associated with the contamination of food by aflatoxin in a high primary liver cancer area,” South African Med. J., vol. 49, no. 22, pp. 877–883, 1975.
     Google Scholar
  32. F. Peles et al., “Adverse Effects, Transformation and Channeling of Aflatoxins Into Food Raw Materials in Livestock,” Front. Microbiol., vol. 10, no. 2861, pp. 1–26, 2019, doi: 10.3389/fmicb.2019.02861.
     Google Scholar
  33. A. R. Sineque, F. Anjos, and C. L. Macuamule, “Aflatoxin Contamination of Foods in Mozambique: Occurrence, Public Health Implications and Challenges,” J Cancer Treat. Diagn, vol. 3, no. 4, pp. 21–29, 2019.
     Google Scholar
  34. R. A. Samson et al., “Phylogeny, identification and nomenclature of the genus Aspergillus,” Stud. Mycol., vol. 78, no. 1, pp. 141–173, 2014, doi: 10.1016/j.simyco.2014.07.004.
     Google Scholar
  35. P. Dias, “Analysis of incentives and disincentives for cassava in Mozambique,” Rome, 2012.
     Google Scholar
  36. B. Dijkink and J. Broeze, “Processing Cassava in Mozambique,” 2019. [Online]. Available: https://ccafs.cgiar.org/resources/publications/processing-cassava-mozambique.
     Google Scholar
  37. G. Di Matteo et al., “Food and COVID-19: Preventive/Co-therapeutic Strategies Explored by Current Clinical Trials and in Silico Studies,” Foods (Basel, Switzerland), vol. 9, no. 8, p. 1036, Aug. 2020, doi: 10.3390/FOODS9081036.
     Google Scholar
  38. C. Altomare, A. F. Logrieco, and A. Gallo, “Mycotoxins and Mycotoxigenic Fungi: Risk and Management. A Challenge for Future Global Food Safety and Security,” in Reference Module in Life Sciences, 2021.
     Google Scholar
  39. K. D. Hyde et al., “The amazing potential of fungi: 50 ways we can exploit fungi industrially,” Fungal Divers., vol. 97, no. 1, pp. 1–136, Jul. 2019, doi: 10.1007/s13225-019-00430-9.
     Google Scholar
  40. A. M. Alizadeh, F. Hashempour-Baltork, A. Mousavi Khaneghah, and H. Hosseini, “New perspective approaches in controlling fungi and mycotoxins in food using emerging and green technologies,” Current Opinion in Food Science, vol. 39. Elsevier Ltd, pp. 7–15, Jun. 01, 2021, doi: 10.1016/j.cofs.2020.12.006.
     Google Scholar
  41. F. Bongomin, S. Gago, R. O. Oladele, and D. W. Denning, “Global and multi-national prevalence of fungal diseases—Estimate precision,” J. Fungi, vol. 3, no. 4, p. 57, Dec. 2017, doi: 10.3390/jof3040057.
     Google Scholar
  42. M. L. Rodrigues and J. D. Nosanchuk, “Fungal diseases as neglected pathogens: A wake-up call to public health officials,” PLoS Negl. Trop. Dis., vol. 14, no. 2, p. e0007964, Feb. 2020, doi: 10.1371/journal.pntd.0007964.
     Google Scholar
  43. K. Kainz, M. A. Bauer, F. Madeo, and D. Carmona-Gutierrez, “Fungal infections in humans: The silent crisis,” Microb. Cell, vol. 7, no. 6, pp. 143–145, Jun. 2020, doi: 10.15698/mic2020.06.718.
     Google Scholar
  44. B. Ostrowsky et al., “Candida auris Isolates Resistant to Three Classes of Antifungal Medications — New York, 2019,” MMWR. Morb. Mortal. Wkly. Rep., vol. 69, no. 1, pp. 6–9, Jan. 2020, doi: 10.15585/mmwr.mm6901a2.
     Google Scholar
  45. D. Garg et al., “Coronavirus Disease (Covid-19) Associated Mucormycosis (CAM): Case Report and Systematic Review of Literature,” Mycopathologia, vol. 186, no. 2, pp. 289–298, May 2021, doi: 10.1007/s11046-021-00528-2.
     Google Scholar
  46. R. O. Oladele, O. O. Ayanlowo, M. D. Richardson, and D. W. Denning, “Histoplasmosis in Africa: An emerging or a neglected disease?,” PLoS Negl. Trop. Dis., vol. 12, no. 1, Jan. 2018, doi: 10.1371/journal.pntd.0006046.
     Google Scholar
  47. “Index Fungorum.” http://www.indexfungorum.org/ (accessed Jun. 07, 2021).
     Google Scholar
  48. L. Perincherry, J. Lalak-Kańczugowska, and Ł. Stępień, “Fusarium-Produced Mycotoxins in Plant-Pathogen Interactions,” Toxins (Basel)., vol. 11, no. 11, p. 664, Nov. 2019, doi: 10.3390/TOXINS11110664.
     Google Scholar
  49. A. S. Hassan et al., “Antifungal Susceptibility and Phylogeny of Opportunistic Members of the Genus Fusarium Causing Human Keratomycosis in South India,” Med. Mycol., vol. 54, no. 3, pp. 287–294, Jan. 2016, doi: 10.1093/mmy/myv105.
     Google Scholar
  50. Y. Zhang et al., “The genome of opportunistic fungal pathogen Fusarium oxysporum carries a unique set of lineage-specific chromosomes,” Commun. Biol., vol. 3, no. 1, p. 50, Dec. 2020, doi: 10.1038/s42003-020-0770-2.
     Google Scholar
  51. R. Ploetz and K. Pegg, “Fusarium wilt of banana and Wallace’s line: Was the disease originally restricted to his Indo-Malayan region?,” Australas. Plant Pathol., vol. 26, no. 4, pp. 239–249, 1997, doi: 10.1071/AP97039.
     Google Scholar
  52. N. Portal González et al., “Phytotoxic Metabolites Produce by Fusarium oxysporum f. sp. cubense Race 2,” Front. Microbiol., vol. 12, Apr. 2021, doi: 10.3389/fmicb.2021.629395.
     Google Scholar
  53. C. Shao et al., “Predicting virulence of Fusarium oxysporum F. Sp. Cubense based on the production of mycotoxin using a linear regression model,” Toxins (Basel)., vol. 12, no. 4, p. 254, Apr. 2020, doi: 10.3390/toxins12040254.
     Google Scholar
  54. S. C. Hwang and W. H. Ko, “Cavendish banana cultivars resistant to fusarium wilt acquired through somaclonal variation in Taiwan,” Plant Dis., vol. 88, no. 6, pp. 580–588, 2004, doi: 10.1094/PDIS.2004.88.6.580.
     Google Scholar
  55. D. G. Catambacan and C. J. R. Cumagun, “Weed‐associated fungal endophytes as biocontrol agents of fusarium oxysporum f. Sp. cubense tr4 in cavendish Banana,” J. Fungi, vol. 7, no. 3, p. 224, Mar. 2021, doi: 10.3390/jof7030224.
     Google Scholar
  56. S. J. L. Mintoff et al., “Banana Cultivar Field Screening for Resistance to Fusarium oxysporum f.sp. cubense Tropical Race 4 in the Northern Territory,” J. Fungi, vol. 7, no. 627, pp. 1–15, 2021, doi: https://doi.org/10.3390/jof7080627.
     Google Scholar
  57. R. Argumedo-Delira, M. J. Gómez-Martínez, and R. Uribe-Kaffure, “Fungal tolerance: An alternative for the selection of fungi with potential for the biological recovery of precious metals,” Appl. Sci., vol. 10, no. 22, pp. 1–12, Nov. 2020, doi: 10.3390/app10228096.
     Google Scholar
  58. A. Warris and E. R. Ballou, “Oxidative responses and fungal infection biology,” Semin. Cell Dev. Biol., vol. 89, pp. 34–46, May 2019, doi: 10.1016/j.semcdb.2018.03.004.
     Google Scholar
  59. Y. Wang et al., “Production, signaling, and scavenging mechanisms of reactive oxygen species in fruit–pathogen interactions,” Int. J. Mol. Sci., vol. 20, no. 12, p. 2994, Jun. 2019, doi: 10.3390/ijms20122994.
     Google Scholar
  60. H. Bahrulolum et al., “Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector,” J. Nanobiotechnology, vol. 19, no. 1, p. 86, Dec. 2021, doi: 10.1186/s12951-021-00834-3.
     Google Scholar
  61. T. Bohu et al., “Evidence for fungi and gold redox interaction under Earth surface conditions,” Nat. Commun., vol. 10, no. 1, pp. 1–13, Dec. 2019, doi: 10.1038/s41467-019-10006-5.
     Google Scholar
  62. Z. Pearson, “‘Coca got us here and now it’s our weakness:’ Fusarium oxysporum and the political ecology of a drug war policy alternative in Bolivia,” Int. J. Drug Policy, vol. 33, pp. 88–95, Jul. 2016, doi: 10.1016/j.drugpo.2016.05.007.
     Google Scholar
  63. T. R. Gordon, “Fusarium oxysporum and the Fusarium Wilt Syndrome,” Annu. Rev. Phytopathol., vol. 55, pp. 23–39, Aug. 2017, doi: 10.1146/annurev-phyto-080615-095919.
     Google Scholar
  64. V. Edel-Hermann and C. Lecomte, “Current status of fusarium oxysporum formae speciales and races,” Phytopathology, vol. 109, no. 4, pp. 512–530, Apr. 2019, doi: 10.1094/PHYTO-08-18-0320-RVW.
     Google Scholar
  65. J. N. Thakker, P. Dalwadi, and P. C. Dhandhukia, “Biosynthesis of Gold Nanoparticles Using Fusarium oxysporum f. sp. cubense JT1, a Plant Pathogenic Fungus,” ISRN Biotechnol., vol. 2013, pp. 1–5, Nov. 2013, doi: 10.5402/2013/515091.
     Google Scholar
  66. P. Jangir, N. Mehra, K. Sharma, N. Singh, M. Rani, and R. Kapoor, “Secreted in Xylem Genes: Drivers of Host Adaptation in Fusarium oxysporum,” Front. Plant Sci., vol. 12, p. 628611, Apr. 2021, doi: 10.3389/fpls.2021.628611.
     Google Scholar
  67. M. Rai et al., “Fusarium as a novel fungus for the synthesis of nanoparticles: Mechanism and applications,” J. Fungi, vol. 7, no. 2, pp. 1–24, Feb. 2021, doi: 10.3390/jof7020139.
     Google Scholar
  68. A. Rónavári et al., “Biosynthesized silver and gold nanoparticles are potent antimycotics against opportunistic pathogenic yeasts and dermatophytes,” Int. J. Nanomedicine, vol. 13, pp. 695–703, Feb. 2018, doi: 10.2147/IJN.S152010.
     Google Scholar
  69. B. Mughal, S. Z. J. Zaidi, X. Zhang, and S. U. Hassan, “Biogenic nanoparticles: Synthesis, characterisation and applications,” Appl. Sci., vol. 11, no. 6, p. 2598, Mar. 2021, doi: 10.3390/app11062598.
     Google Scholar
  70. M. Yaseen et al., “Preparation, Functionalization, Modification, and Applications of Nanostructured Gold: A Critical Review,” Energies, vol. 14, no. 5, p. 1278, Feb. 2021, doi: 10.3390/en14051278.
     Google Scholar
  71. F. Wu, N. J. Mitchell, D. Male, and T. W. Kensler, “Reduced Foodborne Toxin Exposure Is a Benefit of Improving Dietary Diversity,” Toxicol. Sci., vol. 141, no. 2, p. 329, Oct. 2014, doi: 10.1093/TOXSCI/KFU137.
     Google Scholar
  72. Y. C. S. Adjovi et al., “Occurrence of mycotoxins in cassava (Manihot esculenta Crantz) and its products,” Int. J. Food Safety, Nutr. Public Heal., vol. 5, no. 3/4, pp. 217–247, 2015, doi: 10.1504/ijfsnph.2015.070157.
     Google Scholar
  73. E. Cambaza, S. Koseki, and S. Kawamura, “A glance at aflatoxin research in mozambique,” Int. J. Environ. Res. Public Health, vol. 15, no. 8, p. 1673, Aug. 2018, doi: 10.3390/ijerph15081673.
     Google Scholar
  74. A. D. van den Brand and A. S. Bulder, “An overview of mycotoxins relevant for the food and feed supply chain: using a novel literature screening method,” Bilthoven, The Netherlands, 2020. doi: 10.21945/RIVM-2019-0223.
     Google Scholar
  75. O. Omotayo, A. Omotayo, M. Mwanza, and O. Babalola, “Prevalence of Mycotoxins and Their Consequences on Human Health,” Toxicol. Res., vol. 35, no. 1, pp. 1–7, 2019, doi: 10.5487/TR.2019.35.1.001.
     Google Scholar
  76. USDA, “Grain Fungal Diseases and Mycotoxin Reference,” Washington DC, USA, 2006. Accessed: Aug. 04, 2021. [Online]. Available: https://www.gipsa.usda.gov/fgis/publication/ref/mycobook.pdf.
     Google Scholar
  77. M. Bignami et al., “Evaluation of the health risks related to the presence of cyanogenic glycosides in foods other than raw apricot kernels,” EFSA J., vol. 17, no. 4, pp. 1–89, 2019, doi: 10.2903/j.efsa.2019.5662.
     Google Scholar
  78. P. Guerre, “Mycotoxin and Gut Microbiota Interactions,” Toxins (Basel)., vol. 12, no. 12, p. 769, Dec. 2020, doi: 10.3390/toxins12120769.
     Google Scholar
  79. D. Zheng, T. Liwinski, and E. Elinav, “Interaction between microbiota and immunity in health and disease,” Cell Res., vol. 30, no. 6, pp. 492–506, Jun. 2020, doi: 10.1038/s41422-020-0332-7.
     Google Scholar
  80. Y. Gao, L. Meng, H. Liu, J. Wang, N. Zheng "The Compromised Intestinal Barrier Induced by Mycotoxins," Toxins, vol. 12, no. 10, p.619, 2020, doi.org/10.3390/toxins12100619
     Google Scholar
  81. I. Alassane-Kpembi, P. Pinton, and I. P. Oswald, “Effects of Mycotoxins on the Intestine,” Toxins (Basel)., vol. 11, no. 3, p. 159, Mar. 2019, doi: 10.3390/TOXINS11030159.
     Google Scholar
  82. S. Luo, C. Terciolo, A. P. F. L. Bracarense, D. Payros, P. Pinton, and I. P. Oswald, “In vitro and in vivo effects of a mycotoxin, deoxynivalenol, and a trace metal, cadmium, alone or in a mixture on the intestinal barrier,” Environ. Int., vol. 132, p. 105082, Nov. 2019, doi: 10.1016/j.envint.2019.105082.
     Google Scholar
  83. C. Gruber-Dorninger, T. Jenkins, and G. Schatzmayr, “Global mycotoxin occurrence in feed: A ten-year survey,” Toxins (Basel)., vol. 11, no. 7, p. 375, Jul. 2019, doi: 10.3390/toxins11070375.
     Google Scholar
  84. K. Kaźmierczak-Siedlecka, J. Ruszkowski, M. Fic, M. Folwarski, and W. Makarewicz, “Saccharomyces boulardii CNCM I-745: A Non-bacterial Microorganism Used as Probiotic Agent in Supporting Treatment of Selected Diseases,” Curr. Microbiol., vol. 77, no. 9, pp. 1987–1996, Sep. 2020, doi: 10.1007/s00284-020-02053-9.
     Google Scholar
  85. P. Dias, “Analysis of incentives and disincentives for maize in Mozambique,” Rome, 2013.
     Google Scholar
  86. E. M. Salvador, V. Steenkamp, and C. M. E. McCrindle, “Production, consumption and nutritional value of cassava (Manihot esculenta, Crantz) in Mozambique: An overview,” J. Agric. Biotechnol. Sustain. Dev., vol. 6, no. 3, pp. 29–38, 2014, doi: 10.5897/jabsd2014.0224.
     Google Scholar
  87. E. Kashala-Abotnes, D. Okitundu, D. Mumba, M. J. Boivin, T. Tylleskär, and D. Tshala-Katumbay, “Konzo: a distinct neurological disease associated with food (cassava) cyanogenic poisoning,” Brain Res. Bull., vol. 145, pp. 87–91, Feb. 2019, doi: 10.1016/j.brainresbull.2018.07.001.
     Google Scholar
  88. D. Schrenk et al., “Evaluation of the health risks related to the presence of cyanogenic glycosides in foods other than raw apricot kernels,” EFSA J., vol. 17, no. 4, p. 5662, Apr. 2019, doi: 10.2903/j.efsa.2019.5662.
     Google Scholar
  89. K. Hell and C. Mutegi, “Aflatoxin control and prevention strategies in key crops of Sub-Saharan Africa,” African J. Microbiol. Res., vol. 5, no. 5, pp. 459–466, 2011, doi: 10.5897/AJMR10.009.
     Google Scholar
  90. C. A. Chilaka, M. De Boevre, O. O. Atanda, and S. De Saeger, “Prevalence of Fusarium mycotoxins in cassava and yam products from some selected Nigerian markets,” Food Control, vol. 84, no. 2, pp. 226–231, Feb. 2018, doi: 10.1016/J.FOODCONT.2017.08.005.
     Google Scholar
  91. F. Imade et al., “Updates on food and feed mycotoxin contamination and safety in Africa with special reference to Nigeria,” Mycology, vol. 6, pp. 1–16, Jun. 2021, doi: 10.1080/21501203.2021.1941371.
     Google Scholar
  92. C. Costa and C. Delgado, The Cassava Value Chain in Mozambique. World Bank, Washington, DC, 2019.
     Google Scholar
  93. T. E. Lulamba, R. A. Stafford, and P. B. Njobeh, “A sub-Saharan African perspective on mycotoxins in beer – a review,” J. Inst. Brew., vol. 125, no. 2, pp. 184–199, Jan. 2019, doi: 10.1002/jib.558.
     Google Scholar
  94. A. B. Abass, W. Awoyale, M. Sulyok, and E. O. Alamu, “Occurrence of regulated mycotoxins and other microbial metabolites in dried cassava products from nigeria,” Toxins (Basel)., vol. 9, no. 7, p. 207, Jul. 2017, doi: 10.3390/toxins9070207.
     Google Scholar
  95. O. Ekpa, N. Palacios-Rojas, G. Kruseman, V. Fogliano, and A. R. Linnemann, “Sub-Saharan African maize-based foods: Technological perspectives to increase the food and nutrition security impacts of maize breeding programmes,” Glob. Food Sec., vol. 17, no. June, pp. 48–56, Jun. 2018, doi: 10.1016/J.GFS.2018.03.007.
     Google Scholar
  96. D. Tschirley, D. Abdula, and M. T. Weber, “Toward Improved Maize Marketing and Trade Policies to Promote Household Food Security in Central and Southern Mozambique,” 2006. doi: 10.22004/ag.econ.56065.
     Google Scholar
  97. S. Phokane, B. C. Flett, E. Ncube, J. P. Rheeder, and L. J. Rose, “Agricultural practices and their potential role in mycotoxin contamination of maize and groundnut subsistence farming,” S. Afr. J. Sci., vol. 115, no. 9–10, pp. 2–7, 2019, doi: 10.17159/sajs.2019/6221.
     Google Scholar
  98. FEWS NET, “Southern Africa Regional Supply and Market Outlook,” 2018. https://reliefweb.int/sites/reliefweb.int/files/resources/SA_Regional_Supply_and_Market_Outlook_August_2019_to_March_2020.pdf.
     Google Scholar
  99. J. M. Misihairabgwi, C. N. Ezekiel, M. Sulyok, G. S. Shephard, and R. Krska, “Mycotoxin contamination of foods in Southern Africa: A 10-year review (2007–2016),” Critical Reviews in Food Science and Nutrition, vol. 59, no. 1. Taylor and Francis Inc., pp. 43–58, Jan. 02, 2019, doi: 10.1080/10408398.2017.1357003.
     Google Scholar
  100. C. A. Chilaka, M. De Boevre, O. O. Atanda, and S. De Saeger, “The status of fusarium mycotoxins in sub-Saharan Africa: A review of emerging trends and post-harvest mitigation strategies towards food control,” Toxins (Basel)., vol. 9, no. 1, p. 19, Jan. 2017, doi: 10.3390/toxins9010019.
     Google Scholar
  101. J. Alberts, J. Rheeder, W. Gelderblom, G. Shephard, and H. M. Burger, “Rural subsistence maize farming in South Africa: Risk assessment and intervention models for reduction of exposure to fumonisin mycotoxins,” Toxins (Basel)., vol. 11, no. 6, p. 334, Jun. 2019, doi: 10.3390/toxins11060334.
     Google Scholar
  102. B. Warth et al., “Quantitation of mycotoxins in food and feed from Burkina Faso and Mozambique using a modern LC-MS/MS multitoxin method,” J. Agric. Food Chem., vol. 60, no. 36, pp. 9352–9363, Sep. 2012, doi: 10.1021/jf302003n.
     Google Scholar
  103. C. E. Pray, J. P. Rheeder, M. Gouse, Y. Volkwyn, L. Van Der Westhuizen, and G. S. Shephard, “Bt maize and fumonisin reduction in South Africa: Potential health impacts,” in Genetically modified crops in Africa: economic and policy lessons from countries south of the Sahara, J. Falck-Zepeda, G. Gruere, and I. Sithole-Niang, Eds. Washington DC, USA: International Food Policy Research Institute (IFPRI), 2013.
     Google Scholar
  104. Joint FAO/WHO Expert Committee on Food Additives, “Evaluation of certain contaminants in food,” Geneva, 2017. [Online]. Available: http://www.who.int/bookorders.
     Google Scholar
  105. WHO Department of Food Safety, “Fumonisins,” Food Safety Digest, 2018. https://www.who.int/foodsafety/FSDigest_Fumonisins_EN.pdf (accessed Aug. 04, 2021).
     Google Scholar
  106. F. Stepman, “Scaling-Up the Impact of Aflatoxin Research in Africa. The Role of Social Sciences,” Toxins (Basel)., vol. 10, no. 4, p. 136, Apr. 2018, doi: 10.3390/TOXINS10040136.
     Google Scholar
  107. J. S. Smith, W. P. Williams, and G. L. Windham, “Aflatoxin in maize: a review of the early literature from ‘moldy-corn toxicosis’ to the genetics of aflatoxin accumulation resistance,” Mycotoxin Res. 2019 352, vol. 35, no. 2, pp. 111–128, Feb. 2019, doi: 10.1007/S12550-018-00340-W.
     Google Scholar
  108. D. Pickova, V. Ostry, J. Toman, and F. Malir, “Aflatoxins: History, Significant Milestones, Recent Data on Their Toxicity and Ways to Mitigation,” Toxins 2021, Vol. 13, Page 399, vol. 13, no. 6, p. 399, Jun. 2021, doi: 10.3390/TOXINS13060399.
     Google Scholar
  109. D. F. Hlashwayo, “Journal of Stored Products and Postharvest Research Aflatoxin B1 contamination in raw peanuts sold in Maputo City, Mozambique and associated factors,” J. Stored Prod. Postharvest Res., vol. 9, no. 6, pp. 58–67, Aug. 2018, doi: 10.5897/JSPPR2018.0261.
     Google Scholar
  110. E. M. Salvador and F. M. Cumbe, “Management Practices of Peanuts Applied by Producers of Manhica and Magude Districts and Consumers of Five Markets of Maputo Municipalities and the Contribution of these Practices for the Exposure to Aflatoxins,” J. Food Sci. Nutr. Res., vol. 03, no. 03, pp. 171–180, 2020, doi: 10.26502/jfsnr.2642-11000047.
     Google Scholar
  111. G. S. Shephard, “Aflatoxins in peanut oil: food safety concerns,” World Mycotoxin J., vol. 11, no. 1, pp. 149–158, Feb. 2018, doi: 10.3920/WMJ2017.2279.
     Google Scholar
  112. J. Augusto, J. Atehnkeng, J. Akello, and E. Al., “Prevalence and distribution of Aspergillus flavus in maize and groundnut fields and aflatoxin contamination in Mozambique,” in Proceedings of the APS-CPS Joint Meeting in Minneapolis, 2014, pp. 9–13, [Online]. Available: https://apsjournals.apsnet.org/doi/pdf/10.1094/PHYTO-104-11-S3.1.
     Google Scholar
  113. I. T. Chabite, A. Magido, F. Joaquim, C. Evódio, and A. S. Andate, “Effects of Kenneth Cyclone on Groundnut Crop (Arachis hypogaea L.) in Two Districts of Northern Mozambique,” J. Agric. Sci. Technol. B, vol. 10, no. 4, pp. 246–254, 2020, doi: 10.17265/2161-6264/2020.04.004.
     Google Scholar
  114. B. Maestroni and A. Cannavan, “Sampling strategies to control mycotoxins,” in Determining mycotoxins and mycotoxigenic fungi in food and feed, S. De Seager, Ed. Cambridge: Woodhead Publishing Limited, 2011.
     Google Scholar
  115. L. P. Vicam, AflaTest Instruction Manual. Watertown, USA, 1999.
     Google Scholar
  116. P. Udomkun, A. N. Wiredu, M. Nagle, J. Müller, B. Vanlauwe, and R. Bandyopadhyay, “Innovative technologies to manage aflatoxins in foods and feeds and the profitability of application – A review,” Food Control, vol. 76, pp. 127–138, Jun. 2017, doi: 10.1016/j.foodcont.2017.01.008.
     Google Scholar
  117. A. L. Senghor, A. Ortega-Beltran, J. Atehnkeng, P. Jarju, P. J. Cotty, and R. Bandyopadhyay, “Aflasafe SN01 is the First Biocontrol Product Approved for Aflatoxin Mitigation in Two Nations, Senegal and The Gambia,” Plant Dis., p. PDIS-09-20-1899, Apr. 2021, doi: 10.1094/pdis-09-20-1899-re.
     Google Scholar
  118. J. Akello et al., “Prevalence of aflatoxin-and fumonisin-producing fungi associated with cereal crops grown in zimbabwe and their associated risks in a climate change scenario,” Foods, vol. 10, no. 2, Feb. 2021, doi: 10.3390/foods10020287.
     Google Scholar
  119. J. Moral et al., “Present status and perspective on the future use of aflatoxin biocontrol products,” Agronomy, vol. 10, no. 4, p. 491, Apr. 2020, doi: 10.3390/agronomy10040491.
     Google Scholar
  120. P. Battilani et al., “Mycotoxin mixtures in food and feed: holistic, innovative, flexible risk assessment modelling approach:,” EFSA Support. Publ., vol. 17, no. 1, p. 1757E, Jan. 2020, doi: 10.2903/sp.efsa.2020.en-1757.
     Google Scholar
  121. S. M. C. Njoroge, “A critical review of aflatoxin contamination of peanuts in Malawi and Zambia: The past, present, and future,” Plant Dis., vol. 102, no. 12, pp. 2394–2406, 2018, doi: 10.1094/pdis-02-18-0266-fe.
     Google Scholar
  122. P. Koletsi, J. W. Schrama, E. A. M. Graat, G. F. Wiegertjes, P. Lyons, and C. Pietsch, “The Occurrence of Mycotoxins in Raw Materials and Fish Feeds in Europe and the Potential Effects of Deoxynivalenol (DON) on the Health and Growth of Farmed Fish Species—A Review,” Toxins (Basel)., vol. 13, no. 6, p. 403, Jun. 2021, doi: 10.3390/toxins13060403.
     Google Scholar
  123. D. C. Kemboi et al., “A review of the impact of mycotoxins on dairy cattle health: Challenges for food safety and dairy production in sub-Saharan Africa,” Toxins (Basel)., vol. 12, no. 4, p. 222, Apr. 2020, doi: 10.3390/toxins12040222.
     Google Scholar
  124. K. Habschied, V. Krstanović, Z. Zdunić, J. Babić, K. Mastanjević, and G. K. Šarić, “Mycotoxins biocontrol methods for healthier crops and stored products,” J. Fungi, vol. 7, no. 5, p. 348, May 2021, doi: 10.3390/jof7050348.
     Google Scholar
  125. K. Nešić, K. Habschied, and K. Mastanjević, “Possibilities for the Biological Control of Mycotoxins in Food and Feed,” Toxins (Basel)., vol. 13, no. 3, p. 198, Mar. 2021, doi: 10.3390/toxins13030198.
     Google Scholar
  126. M. G. Ward, “The regulatory landscape for biological control agents,” EPPO Bull., vol. 46, no. 2, pp. 249–253, Aug. 2016, doi: 10.1111/epp.12307.
     Google Scholar
  127. S. Bhandari, K. R. Pandey, Y. R. Joshi, and S. K. Lamichhane, “An overview of multifaceted role of Trichoderma spp. for sustainable agriculture,” Arch. Agric. Environ. Sci., vol. 6, no. 1, pp. 72–79, Mar. 2021, doi: 10.26832/24566632.2021.0601010.
     Google Scholar
  128. S. Kinyungu, T. Isakeit, P. S. Ojiambo, and C. P. Woloshuk, “Spread of Aspergillus flavus and aflatoxin accumulation in postharvested maize treated with biocontrol products,” J. Stored Prod. Res., vol. 84, p. 101519, Dec. 2019, doi: 10.1016/j.jspr.2019.101519.
     Google Scholar
  129. A. M. Gasperini, A. Rodriguez-Sixtos, C. Verheecke-Vaessen, E. Garcia-Cela, A. Medina, and N. Magan, “Resilience of Biocontrol for Aflatoxin Minimization Strategies: Climate Change Abiotic Factors May Affect Control in Non-GM and GM-Maize Cultivars,” Front. Microbiol., vol. 10, p. 2525, Nov. 2019, doi: 10.3389/fmicb.2019.02525.
     Google Scholar
  130. J. Köhl, R. Kolnaar, and W. J. Ravensberg, “Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy,” Front. Plant Sci., vol. 10, p. 845, Jul. 2019, doi: 10.3389/fpls.2019.00845.
     Google Scholar
  131. E. K. Stuart and K. L. Plett, “Digging Deeper: In Search of the Mechanisms of Carbon and Nitrogen Exchange in Ectomycorrhizal Symbioses,” Front. Plant Sci., vol. 10, p. 1658, Jan. 2020, doi: 10.3389/fpls.2019.01658.
     Google Scholar
  132. N. I. Wisnoski and J. T. Lennon, “Microbial community assembly in a multi-layer dendritic metacommunity,” Oecologia, vol. 195, no. 1, pp. 13–24, Jan. 2021, doi: 10.1007/s00442-020-04767-w.
     Google Scholar
  133. B. Niu et al., “Microbial Interactions Within Multiple-Strain Biological Control Agents Impact Soil-Borne Plant Disease,” Front. Microbiol., vol. 11, no. 10, p. 2452, Oct. 2020, doi: 10.3389/fmicb.2020.585404.
     Google Scholar
  134. G. Berg et al., “Microbiome definition re-visited: old concepts and new challenges,” Microbiome, vol. 8, no. 1, p. 103, Jun. 2020, doi: 10.1186/s40168-020-00875-0.
     Google Scholar
  135. J. Zhu et al., “Effect of ionizing radiation on the bacterial and fungal endophytes of the halophytic plant kalidium schrenkianum,” Microorganisms, vol. 9, no. 5, p. 1050, May 2021, doi: 10.3390/microorganisms9051050.
     Google Scholar
  136. J. K. Jansson and K. S. Hofmockel, “Soil microbiomes and climate change,” Nat. Rev. Microbiol., vol. 18, no. 1, pp. 35–46, Jan. 2020, doi: 10.1038/s41579-019-0265-7.
     Google Scholar
  137. P. G. Kennedy, J. Gagne, E. Perez-Pazos, L. A. Lofgren, and N. H. Nguyen, “Does fungal competitive ability explain host specificity or rarity in ectomycorrhizal symbioses?,” PLoS One, vol. 15, no. 8 August, p. e0234099, Aug. 2020, doi: 10.1371/journal.pone.0234099.
     Google Scholar
  138. V. O. Kasprowicz et al., “African-led health research and capacity building- is it working?,” BMC Public Health, vol. 20, no. 1, pp. 1–10, Jul. 2020, doi: 10.1186/s12889-020-08875-3.
     Google Scholar