Soil Types and their Physio – Chemical Properties for Population Development of Root Knot Nematode (Meloidogyne spp.) in Tomato (Solanum lycopersicum)
Article Main Content
Root Knot Nematodes (RKN) (Meloidogyne spp.) is the major soil borne microorganisms causing severe losses in vegetable production in Sri Lanka. This experiment was conducted to determine the effect of the fourteen different soil types and their physio-chemical properties for population development of Meloidogyne spp on tomato crop. The population of RKN showed significant differences among different soil types. The maximum nematode population (Root Galling Index of 7.25, Number of knots of 165.25) were recorded in Red Yellow Podzolic – Imperfectly Drained soil with higher organic carbon (11.54%), phosphorus (3.30 ppm), potassium (369 ppm), sand (77.06%), moisture content (16.22%) and it was not significantly difference between Red Yellow Podzolic – Imperfectly Drained soil and Regosol. The minimum nematode population (Root Galling Index of 2.75, Number of knots of 51.75) was recorded in Reddish Brown Latosol – Imperfectly Drained soil with organic carbon (4.1% w/w), phosphorus (0.58 ppm), sand (64.66%), and moisture content (6.19%). Analysis of correlation coefficient showed that population of Meloidogyne spp. significantly positive correlated with phosphorus, potassium, nitrogen, EC, soil moisture and sand percentage while significantly negative correlated with the silt + clay percentage, soil temperature and soil pH. There was no significant correlation recorded with soil organic carbon content as it was clearly indicated that all the samples had very low percentage of organic carbon in compared to suppressive soils. Therefore, the study concludes all soil physic-chemical properties except organic carbon have direct effect on the development of population of Meloidogyne spp. and it is varied with the different soil types, hence it is vital to contemplate soil type and its physio-chemical properties when executing Integrated Nematode management programs for Meloidogyne spp. However, further Investigations are required to study the direct effect of soil organic carbon on development of population of Meloidogyne spp.
References
-
Aballay, E. 2007. Evaluación y validación del comportamiento de portainjertos de vid a diferentes poblaciones de nematodos fitoparásitos en plantaciones comerciales de más de tres años. 144 p. Informe técnico final proyecto FIA-PI-C-20051-A-082. Fundación para la Innovación Agraria (FIA), Ministerio de Agricultura de Chile, Santiago, Chile.
Google Scholar
1
-
Amarasena, P.G.D.S., Mohotti, K. M., De Costa, D.M. 2016. Effects of changing rainfall and soil temperature on population density of Pratylenchus loosi in tea lands at different elevations. Tropical Agriculture Research .27(3):265-276.
Google Scholar
2
-
Arévalo, G.E., C.L. Zúñiga, V. Baligar, B. Bailey, y M. Canto. 2007. Dinámica poblacional de nematodos asociados al sistema de cultivo tradicional de cacao en la amazonia peruana. 8 p. In Taller PanAmazónico sobre Biodiversidad del Suelo, Rio Branco, Acre, Brasil. 26 y 29 de septiembre. Available at http://www.iamazonica.org.br/ conteudo / eventos / biodiversidade Solo /pdf / resumos/ Painel2_ArevalosE. pdf.
Google Scholar
3
-
Asif, M., Rehman, B., Parihar, K., Ganni, M.A. and Siddiqui, M.A. 2015. Effects of various physico-chemical factors on the incidence of root knot nematode Meloidogyne spp. infesting Tomato in District Aligarh (Uttar Pradesh) India, Journal of plant Sciences 10(6):234-243.
Google Scholar
4
-
Avendaño, F., F.J. Pierce, O. Schabenberger, and H. Melakeberhan. 2004. Spatial variability. The spatial distribution of soybean cyst nematode in relation to soil texture and soil map unit. Agronomy Journal 96:181-194.
Google Scholar
5
-
Bird, A. F. 1959. The attractiveness of roots to the plant parasitic nematodes Meloidogyne javanica and M. hapla. Nematologica 4,322-335.
Google Scholar
6
-
Bouwman, L.A., and W.B.M. Arts. 2001. Effects of soil compaction on the relationships between nematodes, grass production and soil physical properties. Applied Soil Ecology 14:213-222.
Google Scholar
7
-
Bridge, J. and Page, S.L.J. 1980. Estimation of root-knot nematode infestation levels on roots using a rating chart. Tropical Pest Management 26:296-298.
Google Scholar
8
-
Cadet, P., S.D. Berry, and V.W. Spaull. 2004. Mapping of interactions between soil factors and nematodes. European Journal of Soil Biology 40:77-86.
Google Scholar
9
-
Chitwood, D.J.2003: Research on plant-parasitic nematode biology conducted by the United States Department of Agriculture–Agricultural Research Service, Pest Management Science: 59:748–753.
Google Scholar
10
-
Dabiré, R.K. and Mateille, T. 2004. Soil texture and irrigation influence the transport and the development of Pasteuia penetrans, a bacterial parasite of root knot nematodes. Soil Biology & Biochemistry 26, 539-543.
Google Scholar
11
-
Dharmakeerthi, R.S., Indraratne, S.P., Kumaragamage, D. (2007). Manual of Soil sampling and Analysis.1 St Edition.peradeniya.Sri Lanka.
Google Scholar
12
-
Esquivel, A. 1996. Influencia del suelo sobre las poblaciones de nematodos p. 57-62. In Bertsch, F., W. Badilla, y E. Bornemisza (eds.) X Congreso Nacional Agronómico y de Recursos Naturales, EUNED, San José, Costa Rica. Available at http://www.mag.go.cr/ congreso_agronomico_X/a50-2388-III_057.pdf.
Google Scholar
13
-
Goodwell, P. B. and Ferris, H. 1980. Plant-parasitic nematode distributions in an alfalfa field. Journal of Nematology 12: 136-141.
Google Scholar
14
-
Gorres, J. H., Dichiaro, M. J. Lyons, J. B. and Amador, J. A. 1998. Spatial and temporal patterns of soil biological activity in a forest and an old field. Soil Biology and Biochemistry 30:219-230.
Google Scholar
15
-
Lamberti, F., Ekanayake, H.M.R.K., Sasanelli, N. and Zacheo, F. 2008. Control of root knot nematodes in Sri Lanka. Nematologia Mediterranea. 21(2):.227-234.
Google Scholar
16
-
Mai, W. F. 1985. Plant-parasitic nematodes: their threat to agriculture. In: An advanced treatise on Meloidogyne. Vol. I. Biology and control, eds. by J. N. Sasser and C. C. Carter, pp. 11-18. North Carolina State University, Raleigh, NC, USA.
Google Scholar
17
-
Maraikar, S. (2002). Handbook on Methods of Soil testing. 2nd Edition. Gannoruwa. Sri Lanka.
Google Scholar
18
-
Martin Moluwa Matute, 2013. Soil Nematodes of Brassica rapa: Influence of Temperature and pH. Advances in Natural Science. Vol. 6, No. 4, pp. 20-26.
Google Scholar
19
-
Mashela P., l. W. Duncan, J. H. Graham, and R. Mcsorley .1992, Leaching Soluble Salts Increases Population Densities of Tylenchulus semipenetrans, Journal of Nematology 24(1): 103-108.
Google Scholar
20
-
Mitkowski, N. A. and Abawi, G. S. 2003. Root-knot nematodes. Plant Health Instr. Online publication. doi: 10.1094/PHII-2003-0917-01.
Google Scholar
21
-
Neher et al., 1999, Nematode Communities in Organically and Conventionally Managed Agricultural Soils, Journal of Nematology 31(2):142–154.
Google Scholar
22
-
Neumann, G., Kohls, S., Landsberg, E. Souza, K. S. 0. Yamada, T. and Romheld, V. 2006. Relevance of glyphosate transfer to non-target plants via the rhizosphere. Journal of Plant Diseases and Protection 20,963-969.
Google Scholar
23
-
Oka, Y., Koltai, H., Bar-Eyal, M., Mor, M., Sharon, E., Chet, I. and Spiegel, Y. 2000. New strategies for the control of plant parasitic nematodes. Pest Manag. Sci. 56:983-988.
Google Scholar
24
-
Perry, R. N. and Evans, A. A. F. 1986. Survival mechanisms in: Perry, R.N., Moens, M. and Starr, J. L. (eds). Root-knot nematodes. CAB international. London. pp 201-220.
Google Scholar
25
-
Prot, J. C. 1980. Migration of plant-parasitic nematodes towards plant roots. Review de Nematologie 3, 305- 318.
Google Scholar
26
-
Prot, J. C. and Van Gundy, S. D. 1981. Effect of soil texture and the clay component on migration of Meloidogyne incognita second-stage juveniles. J. Nematol. 13:213-217.
Google Scholar
27
-
Robbins, R.T. and Barker, K.R. 1986. The effects of soil type, particle size, temperature and moisture on reproduction of Belonolaimus longicaudatus, Journal of nematology, 6(1) 1-6.
Google Scholar
28
-
Sarah, J.L., Osseni, B., and Hugon R.,1991. Effect of soil pH on development of Pratylenchus brachyurues populations of pineapple roots. Nematropica, Vol. 21, No.2: 211 – 216.
Google Scholar
29
-
Sasser, J. N. and Carter, C. C. 1985. Overview of the international Meloidogyne project 1975-1984. In: An advanced treatise on Meloidogyne. Vol. I. Biology and control, eds. by J. N. Sasser and C. C. Carter, pp. 19-24. North Carolina State University, Raleigh, NC, USA.
Google Scholar
30
-
Stirling, Graham R., 2014, Biological control of plant parasitic nematodes: soil ecosystem management in sustainable agriculture, 2nd Edition, CABI, UK.
Google Scholar
31
-
Tian, B., Yang, J. and Zhang, K.Q. (2007). Bacteria used in the biological control of plant parasitic nematodes: populations, mechanisms of action, and future prospects. FEMS microbiology ecology. 61(2):197-213.
Google Scholar
32
-
Wallace, H.R. 1968. The dynamics of nematode movement. Annual Review of Phytopathology 6, 91-114.
Google Scholar
33
-
Wei, C.Z., H.F. Zheng, Q. Li, X.T. Lu and Q. Yu et al., 2012. Nitrogen addition regulates soil nematode community composition through ammonium suppression. PloS ONE, Vol.7.10.1371/journal.pone.0043384.
Google Scholar
34
-
Weil, R.R. and Magdoff, F. 2004. Significance of soil organic matter to soil quality and health. In: Magdoff, F. and Weil, R.R. (eds) Soil Organic Matter in sustainable Agriculture. CRC Press, Boca RTON, Florida, pp. 1-43.
Google Scholar
35
-
Wendot, Kibet Philip. 2014. Prediction of root-knot nematode infestation using soil characteristics in tomato fields in mwea, kirinyaga county, Kenya. http://ir- library.ku.ac.ke/handle/123456789/13633: 2020/05/20.
Google Scholar
36
-
Windham, G.L. and Baker, K.R.1986. Effects of Soil Type on the Damage Potential of Meloidogyne incognita on Soybean, Journal of Nematology 18(3):331-338.
Google Scholar
37
-
Yavuzaslanoglu, E., Yamae, M. and Nicol, J. M, 2011. Influence of actinomycete isolates on cereal cyst nematode Heterodera filipjevi juvenile motility. Nematologia Mediterranean 39: 41-45 41.
Google Scholar
38





