##plugins.themes.bootstrap3.article.main##

Monodora myristica (Gaertn.) Dunal is a valuable but underused tropical tree of the Annonaceae or custard apple family. Monodora myristica seeds were dehulled, thermally processed by roasting (10, 20, 30min) and boiling (10, 20, 30min), milled into flour and defatted. Raw (control) Monodora myristica seeds were dehulled, milled into flour, and defatted without any thermal processing. The effects of thermal processing on the functional and pasting properties of flour samples were investigated. Thermal processing had no significant (P ≥ 0.05) effect on the water absorption capacity and swelling power of flour samples. Processing had no significant (P ≥ 0.05) effect on the bulk density of Monodora myristica seed flour samples. Flours processed by boiling exhibited significantly higher (P ≤ 0.05) oil absorption capacity and solubility than the roasted samples. Processing (roasting) did not significantly (P ≥ 0.05) affect the emulsion capacity of flour samples. The roasted flour sample (RO30) had significantly higher (P ≤ 0.05) peak, trough, setback, and final viscosity value among processed flours. Roasted samples had a significantly (P ≤ 0.05) higher breakdown viscosity value than the boiled samples. Thermal processing had no significant (P ≥ 0.05) influence on the peak time of Monodora myristica seed flour. Flour samples from boiled seeds would withstand heating and shear stress compared to other processed samples because of their low breakdown viscosity value. On the other hand, flour from roasted seeds had the highest setback viscosity and would withstand breakdown better than others. Boiled and roasted seed flours of Monodora myristica would be useful in the pasta, noodle, and bakery industries.

References

  1. Burubai WE, Amula P, Daworiye T, Suwadi E, Nimame P. Proximate composition and some technological properties of African nutmeg (Monodora myristica) seeds. Elect. J. Environ. Agric. Food Chem., 2009;8(5): 396–402.
     Google Scholar
  2. Ojiako OA, Igwe CU, Agha NC, Ogbuji CA, Onwuliri VA. Protein and amino acid compositions of Sphenostylis stenocarpa, Sesamum indicum, Monodora myristica and Afzelia Africana seeds from Nigeria. Pak. J. Nutr., 2010;9(4): 368–372. DOI: 10.3923/pjn.2010.368.372.
     Google Scholar
  3. Feyisayo AK, Oluokun OO. Evaluation of antioxidant potentials of Monodora myristica (Gaertn) dunel seeds. Afr. J. Food Sci., 2013;7(9): 317–324. DOI: 10.5897/AJFS2013.
     Google Scholar
  4. Enabulele SA, Oboh FOJ, Uwadiae EO. Antimicrobial, nutritional and phytochemical properties of Monodora myristica seeds. IOSR J. Pharm. Biol. Sci. 2014;9(4): 1–6. DOI:10.9790/3008-09430106.
     Google Scholar
  5. Abdou Bouba A, Ponka R, Njintang Yanou N, El-Sayed MAH, Montet D, Scher J, Mbofung CM. Amino acid and fatty acid profile of twenty wild plants used as spices in Cameroon. Am. J. Food Sci. Technol., 2016; 4(2): 29–37. DOI:10.12691/ajfst-4-2-1.
     Google Scholar
  6. Onyenibe NS, Fowokemi KT, Emmanuel OB. African Nutmeg (Monodora myristica) lowers cholesterol and modulates lipid peroxidation in experimentally induced hypercholesterolemic male wistar rats. Int. J. Biomed. Sci., 2015; 11(2):86–92.
     Google Scholar
  7. Erukainure OI, Oke OV, Owolabi FO, Kayode FO, Umanhonlen EE, Aliyu M. Chemical properties of Monodora myristica and its protective potentials against free radicals in vitro. Oxidants, Antioxid. Med. Sci., 2012;1(2): 127–132. doi: 10.5455/oams.080712.or.009.
     Google Scholar
  8. Olatoye KK, Fapojuwoa OO, Olorunsholaa JA, Ayorinde JO. Potentials of African Nutmeg (Monodora myristica) as a Flavourant in Cookie Production. Int. J. Food Studies, 2019;8:1–12.
     Google Scholar
  9. Enwereuzoh RO, Damaris CO, Uzoukwu UN, Uyanwa CN. Flavor extraction from monodora myristica and tetrapleura tetraptera and production of flavored popcorn from the extract. European J. Food Sci. Technol., 2015;3(2): 1–17.
     Google Scholar
  10. Agiriga AN, Siwela M. Monodora myristica (Gaertn.) Dunal: a plant with multiple food, health and medicinal applications: a review. Am. J. Food Technol., 2017;12(4): 271-284. DOI: 10.3923/ajft.2017.271.284
     Google Scholar
  11. Akinwunmi KF, Oyedapo OO. Evaluation of antioxidant potentials of Monodora myristica (Gaertn.) dunel seeds. Afr. J. Food Sci., 2013;7(9): 317–324. https://doi.org/10.5897/AJFS2013.1020
     Google Scholar
  12. Iwe MO, Agiriga AN. Pasting properties of Ighu – a cassava meal. J. Food Proc. Preser., 2014;38(6): 2209–2222. https://doi.org/10.1111/jfpp.12201.
     Google Scholar
  13. Oloyede OO, James S, Ocheme OB, Chinma CE, Akpa VE. Effects of fermentation time on the functional and pasting properties of defatted Moringa oleifera seed flour. Food Sci. Nutr., 2016;4(1): 89–95. DOI: 10.1002/fsn3.262.
     Google Scholar
  14. Aviara NA, Igbeka JC, Nwokocha LM. Effect of drying temperature on physicochemical properties of cassava starch. Int. Agrophys., 2010;24(3): 219-225.
     Google Scholar
  15. James S, Nwabueze TU. Influence of extrusion condition and defatted soybean inclusion on the functional and pasting characteristics of extruded African breadfruit (Treculia africana) flour blends. Food Sci. Qual. Manage., 2014;34: 26–33.
     Google Scholar
  16. Mbah BO, Eme PE, Ogbusu OF. Effect of cooking methods (boiling and roasting) on nutrients and anti-nutrients content of Moringa oleifera seeds. Pak. J. Nutr., 2012; 11(3): 211–215. DOI: 10.3923/pjn.2012.211.215.
     Google Scholar
  17. Laroche M, Perreault V, Marciniak A, Gravel A, Chamberland J, Doyen A. Comparison of conventional and sustainable lipid extraction methods for the production of oil and protein isolate from edible insect meal. Foods, 2019;8(11):572. doi: 10.3390/foods8110572
     Google Scholar
  18. Phillips RD, Chinnan MS, Branch AL, Miller J, Mcwatters KH. Effects of pre-treatment on functional and nutritional properties of cowpea meal. J. Food Sci., 1988;53:805–809.
     Google Scholar
  19. Sosulski FW. The centrifuge methods for determining flour absorption in hard red spring wheat. Cereal Chem. 1962;39: 344–349.
     Google Scholar
  20. Abbey BW, Ibeh CO. Functional properties of raw and heat processed cowpea (Vigna unguiculata walp) flour. Food Sci., 1988;53(6): 1775–1777. https://doi.org/10.1111/j.1365-2621.1988.tb07840.x.
     Google Scholar
  21. Onwuka GI. Food Analysis and Instrumentation (Theory and practice). Second edition Naphthali Prints, Lagos, Nigeria. 2018;353-359.
     Google Scholar
  22. Beuchat LR, Cherry JB, Quinn MR. Physicochemical properties of peanut powder as affected by proteolysis. J. Agric. Food Chem., 1975;23(4): 616–620. https://doi.org/10.1021/jf60200a045.
     Google Scholar
  23. Crosbie GB. The relationship between swelling properties, paste viscosity and boiled noodle quality in wheat flours. J. Cereal Sci., 1991;13(2):145–150. https://doi.org/10.1016/S0733-5210(09)80031-3.
     Google Scholar
  24. Newport Scientific. Application manual for rapid visco-analyzer using thermocline for windows, Newport Scientific Pty Ltd, Australia, 1998; 2–26.
     Google Scholar
  25. Ogungbenle HN, Adu TO. Proximate composition and functional properties of dehulled African Nutmeg (Monodora myristica). Pak. J. Sci. Ind. Res. Ser. A. Phys. Sci., 2012;55(2): 80–85.
     Google Scholar
  26. Ogungbenle HN, Omaejalile M. Functional and anti-nutritional properties, in-vitro protein digestibility and amino acid composition of dehulled Afzelia africana seeds. Pak. J. Sci. and Ind. Res., 2010;53(5): 265–270.
     Google Scholar
  27. Eke- Ejiofor J, Beleya EA, Onyenorah NI. The Effect of processing methods on the functional and compositional properties of Jackfruit seed flour. Int. J. Nutr. Food Sci., 2014;3(3):166–173. doi: 10.11648/j.ijnfs.20140303.15.
     Google Scholar
  28. Falade KO, Okafor CA. Physical, functional, and pasting properties of flours from corms of two Cocoyam (Colocasia esculenta and Xanthosoma sagittifolium) cultivars. J. Food Sci Technol., 2015;52(6): 3440–3448. doi: 10.1007/s13197-014-1368-9.
     Google Scholar
  29. Houssou P, Ayernor GS. Appropriate processing and food functional properties of maize flour. Afri. J. Sci. Technol., 2002;3(1): 126–131. DOI: 10.4314/ajst.v3i1.15297.
     Google Scholar
  30. Kulkarin KD, Kulkarin DN, Ingle UM. Sorghum malt-based weaning formulations, preparation, functional properties and nutritive value. Food Nutr. Bull., 1991;13(4): 327–332.
     Google Scholar
  31. Aprianita A, Vasiljesic T, Banicova A, Kasapis S. Physicochemical properties of flours and starches from traditional Indonesian tubers and roots. J. Food Sci. Technol., 2014;51(12):3669–3679. doi: 10.1007/s13197-012-0915-5.
     Google Scholar
  32. Ramashia SE, Gwata ET, Medows-Taylor S, Anyasi TA, Jideani AIO. Some physical and functional properties of finger millet (Eleusine coranana) obtained in Sub-Saharan Africa. Food Res. Int., 2017;104: 110–118. doi: 10.1016/j.foodres.2017.09.065.
     Google Scholar
  33. Ma Z, Boye J, Simpson B, Prasher S, Monpetit D, Malcolmson L. Thermal processing effects on the functional properties and microstructure of lentil, chickpea, and pea flours. Food Res. Int., 2011;44(8): 2534–2544.https://doi.org/10.1016/j.foodres.2010.12.017
     Google Scholar
  34. Olaofe O, Akintayo ET, Adeyeye EI, Adubiaro HO. Proximate composition and functional properties of bulma cotton (Bomb capsis) seeds. Egy. J. Food Sci., 2006; 34(1): 81–90.
     Google Scholar
  35. Olaofe O, Adeyemi FO, Adediran GO. Amino acid and mineral composition and functional properties of some oil seeds. J. Agric. Food Chem., 1994;42(4): 878–881. https://doi.org/10.1021/jf00040a007.
     Google Scholar
  36. Fagbemi TN. Effect of blanching and ripening on functional properties of plantain (Musa spp) flour. Foods Hum. Nutr., 1999;54(3): 261–269. doi: 10.1023/a:1008153404357.
     Google Scholar
  37. Ogunsina BS, Indira TN, Bhatnagar AS, Radha C, Sukumar D, Gopalakrishna AG. Quality characteristics and stability of Moringa oleifera seed oil of Indian origin. J. Food Sci. Technol., 2014 ;51(3): 503–510. doi: 10.1007/s13197-011-0519-5.
     Google Scholar
  38. Enujiugha VN, Badejo AA, Iyiola SO, Oluwamukomi MO. Effect of germination on the functional properties of African oil bean (Penthaclethra macrophylla Benth) seed flour. J. Food Agric. Environ., 2003;1(3&4): 72–75.
     Google Scholar
  39. Subago A. Characteristics of hyacinth bean (Labtab purpireus L.) sweet seeds from Indonesia and their protein isolate. Food Chem., 2006;95(1):65–70. DOI: 10.1016/j.foodchem.2004.12.042.
     Google Scholar
  40. Ukom AN, Richard CP, Abasiekong SK. Effect of processing on the proximate, functional and anti-nutritional properties of cocoyam (Xanthosoma mafa S.) flour. Nig. Food J., 2017;35(2): 9–17.
     Google Scholar
  41. Njintang YN, Mbofung CMF, Moates KG, Parker L, Fauld CB, Smith AC. Functional properties of five varieties of taro flour and relationship to creep recovery and sensory characteristics of achu (taro based paste). J. Food Eng., 2007;82(2): 114–120.
     Google Scholar
  42. Odoemelam SA. Functional properties of raw and heat processed jackfruit seeds flour. Pak J. Nut., 2005; 4(6): 366–370.
     Google Scholar
  43. Ocloo FCK, Bansa D, Boatin R, Adom T, Agbemavor WS. Physicochemical, functional and pasting characteristics of flour produced from jackfruits (Artocarpus heterophyllus) seeds. Agric and Bio. J. North Am., 2010;1(5): 903–908. doi:10.5251/abjna.2010.1.5.903.908.
     Google Scholar
  44. Onuoha OG, Chibuzo E, Badau M. Studies on the potential of malted Digitaria exilis, Cyperus esculentus and Colocasia esculenta flour blends as weaning food formulation. Nig. Food J., 2014;32(2): 40–47. https://doi.org/10.1016/S0189-7241(15)30116-8.
     Google Scholar
  45. Jude-Ojei BS, Lola A, Ajayi IO, Seun I. Functional and pasting properties of maize ‘Ogi’ supplemented with fermented Moringa seeds. J. Food Proc. & Technol., 2017; 8(5):674. DOI: 10.4172/2157-7110.1000674.
     Google Scholar
  46. Adebowale YA, Adeyemi IA, Oshodi AA. Functional and physiochemical properties of flours of six Mucuna species. Afr. J. Biotechnol., 2005;4(12): 1461–1468.
     Google Scholar
  47. Safo-Kantanka KO, Acquistucci R. The Physico-chemical properties of cassava starch in relation to the texture of the cooked root. Ghana J. of Agric Sci., 1996;28: 69–80. DOI: 10.4314/gjas.v28i1.2010.
     Google Scholar
  48. Rickard JR, Asaoka MA, Blanshard JMV. The physicochemical properties of cassava starch. Trop Sci., 1991;31: 189–207.
     Google Scholar
  49. Adegunwa MO, Bakare HA, Alamu EO, Abiodun OK. Processing effects on chemical, functional and pasting properties of cowpea flour from different varieties. Nig. Food J., 2012;30(1): 67–73. https://doi.org/10.1016/S0189-7241(15)30015-1.
     Google Scholar
  50. Eke-Ejiofor J, Barber LI, Kiin-Kabari DB. Effect of Pre-Boiling on the Chemical, functional and Pasting Properties of Rice. J. Agric. Bio. Sci., 2011; 2(7): 214–219.
     Google Scholar
  51. Kesarwani A, Chiang PY, Chen SS. Rapid Visco Analyzer measurements of japonica rice cultivars to study interrelationship between pasting properties and farming system. Int. J. Agron. 2016; 1-7. https://doi.org/10.1155/2016/3595326
     Google Scholar
  52. Han X-Z, Hamaker BR. Amylopectin fine structure and rice starch paste breakdown. J. Cereal Sci. 2001;34(3): 279–284. https://doi.org/10.1006/jcrs.2001.0374
     Google Scholar
  53. Liu Q, Donner E, Yin Y, Huang RL, Fan MZ. The physicochemical properties and in vitro digestibility of selected cereals, tubers and legumes grown in China. Food Chem. 2006;99(3): 470–477. https://doi.org/10.1016/j.foodchem.2005.08.008
     Google Scholar
  54. Shimel AE, Meaza M, Rakshit S. Physic-chemical properties, pasting behaviour and characteristics of flour and starch from improved bean (Phaseoluus vulgaris L.) Varieties Grown in East Africa. CIGRE, 2006;8: 1–18.
     Google Scholar
  55. Hoover R, Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydr Polym., 2001;45(3): 253–267. https://doi.org/10.1016/S0144-8617(00)00260-5.
     Google Scholar
  56. Iwe MO, Onyeukwu U, Agiriga AN. Proximate, functional and pasting properties of FARO 44 rice, African yam bean and brown cowpea seeds composite flour. Cogent Food Agric., 2016;2(1): 1–10. https://doi.org/10.1080/23311932.2016.1142409.
     Google Scholar
  57. Kaur M, Singh N. Studies on functional, thermal and pasting properties of flour from different chick pea cultivars. Food Chem., 2005;91(3): 403–411. DOI: 10.1016/j.foodchem.2004.06.015.
     Google Scholar
  58. Lii CY, Tsai M, Tseng KH. Effect of amylose content on rheological properties of rice starch. Cereal Chem., 1996;73(4):415–420.
     Google Scholar
  59. Flores-Farias F, Martinez-Bustos Y, Salinas-Moreno YK, Chang JS, Hernandez R, Rios JE. Physicochemical and rheological characteristics of commercial nixtamalised Mexican corn flours for tortillas. J Sci. Food Agric., 2000;80(6): 657–664. DOI: 10.1002/(SICI)1097-0010(20000501)80:6<657:AID-JSFA576>3.0.CO;2-J.
     Google Scholar
  60. Peroni FHG, Roche TS, Franco CML. Some structural and physicochemical characteristics of tuber and root starches. Food Sci. Tech. Int., 2006;12(6): 505–513. https://doi.org/10.1177%2F1082013206073045.
     Google Scholar
  61. Ikegwu OJ, Okechukwu PE, Ekumenkana EO. Physicochemical and pasting characteristics of flour and starch from Achi (Brachystegia eurycoma) seed. J. Food Tech., 2010;8(2): 58–66. DOI: 10.3923/jftech.2010.58.66.
     Google Scholar
  62. Chinma CE, Adewuyi O, Abu OJ. Effect of germination on the chemical, functional and pasting properties of flour from brown and yellow varieties of tiger nut (Cyperus esculentus). Food Res. Int., 2009;42(8): 1004–1009. https://doi.org/10.1016/j.foodres.2009.04.024.
     Google Scholar