Predicting Seasonal Rainfall Patterns and Trends in Juba County, South Sudan Using Artificial Neural Networks
##plugins.themes.bootstrap3.article.main##
A simple Feed Forward Neural Network (FFNN) model with a learning back-propagation algorithm was applied to forecast rainfall data from 1997-2016 of Juba County, South Sudan. Annual rainfall data were aggregated into three seasons MAMJ, JAS and OND and later trained for best predictions for the period 2017-2034 using the Alyuda Forecaster XL software. Best training was attained once the minimum error or cost function of the weight was attained during gradient descent and expressed as Mean Square Error (MSE) and AE of the input variable. The results showed that for MAMJ and JAS months, the number good forecasts were over 97% whereas this was between 60-80% for OND months. The Seasonal Kendal (SK) test on future rainfall forecasts as well as the Theil-Sen slope showed a declining monotonic trend in the mean amounts in all three seasons with MAMJ, JAS at OND at 100, 150 and 80 mm respectively towards the end of 2034. Declining onset of MAMJ rains is expected to significantly affect the timing for land preparation and crop planting. The forecast accuracy of the FFNN can be used as a vital tool for decision makers in projecting future rainfall events.
References
-
D. Lomeling, A. L. Modi, S. K. Moti, M. C. Kenyi, G. M. Silvestro, J. L. L. Yieb. Comparing the Macro-aggregate Stability of Two Tropical Soils: Clay Soil (Eutric vertisol) and Sandy Loam Soil (Eutric leptosol). International Journal of Agriculture and Forestry vol. 6 no. 4:142-151. 2016.
Google Scholar
1
-
B. Li, L. Wang, K. F. Kaseke, L. Li, M. K. Seely. The Impact of Rainfall on Soil Moisture Dynamics in a Foggy Desert.
Google Scholar
2
-
PLOS ONE, vol. 11 no. 10 e0164982.
Google Scholar
3
-
doi: 10.1371/journal.pone.0164982. 2016.
Google Scholar
4
-
M. Burke, A. de Janvry, J. Quintero-. Providing index-based
Google Scholar
5
-
Agricultural insurance to smallholders: Recent progress and
Google Scholar
6
-
future promise. 2015. Available at:
Google Scholar
7
-
http://siteresources.worldbank.org/EXTABCDE/Resources/7455676- 1292528456380/7626791-1303141641402/7878676-1306270833789/Parallel-Session-5-Alain_de_Janvry.pdf. Accessed 18 Nov 2015.
Google Scholar
8
-
B. Narasimhan and R. Srinivasan. Development and evaluation of soil moisture deficit index (SMDI) and evapotranspiration deficit index (ETDI) for agricultural drought monitoring. Agric. For. Meteorol., vol. 133: 69–88. 2005.
Google Scholar
9
-
E. Dutra, P. Viterbo, P. M. A. Miranda. Era-40 reanalysis hydrological applications in the characterization of regional drought. Geophys. Res. Lett. 35, L19402. 2008.
Google Scholar
10
-
E. Njoku, T. Jackson, V. Lakshmi, T. Chan, S. Nghiem. Soil
Google Scholar
11
-
moisture retrieval from AMSR-E, IEEE Geosc. Remote Sens. Let., vol. 41 no. 2: 215–229. doi:10.1109/TGRS.2002.808243. 2003.
Google Scholar
12
-
M. Owe, R. de Jeu, T. Holmes. Multi-sensor historical climatology of satellite-derived global land surface moisture, J. Geophys. Res., vol. 113, F01002. doi:10.1029/2007JF000769.2008.
Google Scholar
13
-
P. Singh. Indian summer monsoon rainfall (ISMR) forecasting
Google Scholar
14
-
using time series data: A fuzzy-entropy-neuro based expert system. Geoscience Frontiers, vol. 9: 1243-1257. 2018.
Google Scholar
15
-
H. Hartmann, J. A. Snow, B. Su. Seasonal predictions of precipitation in the Aksu-Tarim River basin for improved water
Google Scholar
16
-
resources management. Glob. Planet. Chang., vol. 147: 86–96. 2016.
Google Scholar
17
-
S. R. P. Devi, C. Arulmozhiyarman, C. Venktash, A. Pramay.A.
Google Scholar
18
-
Performance comparison of artificial neural network models for daily
Google Scholar
19
-
rainfall prediction. International Journal of Automation and
Google Scholar
20
-
Computing, vol. 13 no. 5: 417-427. 2016.
Google Scholar
21
-
N. Q. Hung, M. S. Babel, S. Weesakul, N. K. Tripathi. An artificial
Google Scholar
22
-
neural network model for rainfall forecasting in Bangkok, Thailand,
Google Scholar
23
-
Hydrol. Earth Syst. Sci., vol. 13: 1413– 1425. 2009.
Google Scholar
24
-
B. Warsito, R. Gernowo, A. Sugiharto. Rainfall prediction by using
Google Scholar
25
-
wavelet general regression neural network. Int. J. Appl. Math. Stat.,
Google Scholar
26
-
vol. 54 no. 3: 32–41. 2016.
Google Scholar
27
-
M. Haviluddin, S. Hardwinarto, M. A. Sumaryono. 2015. Rainfall
Google Scholar
28
-
Monthly Prediction Based on Artificial Neural Network: A Case
Google Scholar
29
-
Study in Tenggarong Station, East Kalimantan –Indonesia. Procedia
Google Scholar
30
-
Computer Science, vol. 59: 142 – 151. 2015.
Google Scholar
31
-
J. Abbot, J and J. Marohasy. Skilful rainfall forecasts from artificial
Google Scholar
32
-
neural networks with long duration series and single month
Google Scholar
33
-
optimization. Atmospheric Research, vol. 197: 289-299. 2017b.
Google Scholar
34
-
M. H. Elsanabary and T. Y. Gan. Wavelet analysis of seasonal
Google Scholar
35
-
rainfall variability of the Upper Blue Nile Basin, its teleconnection to
Google Scholar
36
-
global sea surface temperature, and its forecasting by an artificial
Google Scholar
37
-
neural network. Mon. Weather Rev., vol.142 no. 5: 1771–1791.
Google Scholar
38
-
Google Scholar
39
-
K. Benmahdjoub, Z. Amour, M. Boulifa. Forecasting of rainfall using
Google Scholar
40
-
time delay neural network in Tizi-Ouzou (Algeria). Terragreen 13
Google Scholar
41
-
International Conference 2013- Advancements in Renewable Energy
Google Scholar
42
-
and Clean Environment. Energy Procedia, vol. 36: 1138–1146.
Google Scholar
43
-
Google Scholar
44
-
H. S. Badr, B. F. Zaitchik, S. D. Guikema. Application of
Google Scholar
45
-
statistical models to the prediction of seasonal rainfall anomalies over the Sahel. J. Appl. Meteorol. Climatol., vol. 3: 614–636. 2014.
Google Scholar
46
-
M. Zeynoddin, H. Bonakdari, A. Azari, I. Ebtehaj, B. Gharabaghi,
Google Scholar
47
-
H. R. Madavar. Novel hybrid linear stochastic with non-Linear extreme machine learning method. J Environ. Manage. vol. 15 no.
Google Scholar
48
-
: 190-206. doi: 10.1016/j.jenvman.2018.05.072. 2018.
Google Scholar
49
-
J. L. Ng, S. A. Aziz, H. F. Huang, Y. Wayayok, M. K. Rowshon.
Google Scholar
50
-
Stochastic modelling of seasonal and yearly rainfalls with low-
Google Scholar
51
-
frequency variability. Stoch. Environ. Res. Risk A. vol, 31: 2215–
Google Scholar
52
-
https://doi.org/10.1007/s00477-016- 1373-9. 2017.
Google Scholar
53
-
Z. M. Yaseen, M I. Ghareb, I. Ebtehaj, J. Bonakdari, R. Siddique,
Google Scholar
54
-
S. Heddam, A. A. Yusif, R. Deo. Rainfall pattern forecasting using
Google Scholar
55
-
novel hybrid intelligent model based ANFIS-FFA. Water Resour.
Google Scholar
56
-
Manag., vol. 32 no. 1: 105-122.
Google Scholar
57
-
https://doi.org/10.1007/s11269-017-1797-0. 2018.
Google Scholar
58
-
O. I. Osarumwense. Applicability of box Jenkins SARIMA model in
Google Scholar
59
-
rainfall forecasting: a case study of Port-Harcourt South Nigeria.
Google Scholar
60
-
Can. J. Comput. Math. Nat. Sci. Eng. Med., vol. 4: 1–4. 2013.
Google Scholar
61
-
D. Lomeling, S. W. Kenyi. Forecasting solid waste generation in Juba
Google Scholar
62
-
Town, South Sudan using Artificial Neural Networks (ANNs) and
Google Scholar
63
-
Autoregressive Moving Averages (ARMA). Journal of Environment
Google Scholar
64
-
and Waste Management, vol. 4 no. 2: 211-223. 2017.
Google Scholar
65
-
H, Moeeni, B. Hossein, I. Ebtehaj. Integrated SARIMA with
Google Scholar
66
-
Neuro-Fuzzy Systems and Neural Networks for Monthly
Google Scholar
67
-
Inflow Prediction. Water Resources Manage., vol. 37 no. 1: 1- 17.
Google Scholar
68
-
doi 10.1007/s11269-017-1632-7. 2017.
Google Scholar
69
-
M. A. Khamis and K. A. Fattah. Estimating oil–gas ratio
Google Scholar
70
-
for volatile oil and gas condensate reservoirs: artificial neural
Google Scholar
71
-
network, support vector machines and functional network approach.
Google Scholar
72
-
Journal of Petroleum Exploration and Production Technology, vol. 9:
Google Scholar
73
-
-582. doi.org/10.1007/s13202-018-0501-0. 2018.
Google Scholar
74
-
P. Mirzaie and S. Salavati. The Application of Artificial Neural
Google Scholar
75
-
Networks for the Prediction of Oil Production Flow Rate, Energy
Google Scholar
76
-
Sources, Part A: Recovery, Utilization, and Environmental Effects,
Google Scholar
77
-
vol. 34 no. 19: 1834-1843. doi:10.1080/15567036.2010.492386.2012.
Google Scholar
78
-
R. H. Abiyev and M. K. S. Ma’aitah MKS. Deep Convolutional
Google Scholar
79
-
Neural Networks for Chest Diseases Detection. Journal of
Google Scholar
80
-
Healthcare Engineering. Article ID 4168538, 11 pages.
Google Scholar
81
-
https://doi.org/10.1155/2018/4168538. 2018.
Google Scholar
82
-
S. P. Mohanty, D. Hughes, M. Salathé. Using Deep Learning
Google Scholar
83
-
for Image-Based Plant Disease Detection. Front. Plant Sci.,
Google Scholar
84
-
vol. 7 Article ID 1419, 10 pages. doi: 10.3389/fpls.2016.01419. 2016.
Google Scholar
85
-
L. Liu, M. Ji, M. Buchroithner. Transfer Learning for Soil
Google Scholar
86
-
Spectroscopy Based on Convolutional Neural Networks and Its
Google Scholar
87
-
Application in Soil Clay Content Mapping Using Hyperspectral
Google Scholar
88
-
Imagery. Sensors 18: 3169, 18 pages. doi:10.3390/s18093169. 2018.
Google Scholar
89
-
T. Shaikhina and N. A. Khovanova. 2017. Handling limited datasets
Google Scholar
90
-
with neural networks in medical applications: A small data approach.
Google Scholar
91
-
Artificial Intelligence in Medicine, vol. 75: 51-63.
Google Scholar
92
-
http://dx.doi.org/10.1016/j.artmed.2016.12.003. 2016.
Google Scholar
93
-
M. Hayes, M. Svoboda, N. Wall, M. Widhalm. The Lincoln
Google Scholar
94
-
Declaration on Drought Indices: Universal Meteorological
Google Scholar
95
-
Drought Index Recommended. Bull. Amer. Meteor. Soc. vol. 92:
Google Scholar
96
-
–488. doi: http://dx.doi.org/10.1175/2010BAMS3103.1. 2011.
Google Scholar
97
-
T. B. McKee, N. J. Doesken, J. Kleist J. The Relationship of
Google Scholar
98
-
Drought Frequency and Duration to Time Scales. Eighth
Google Scholar
99
-
Conference on Applied Climatology, 17-22 January 1993,
Google Scholar
100
-
Anaheim, California.
Google Scholar
101
-
R. M. Hirsch, J. R. Slack, R. A. Smith. Techniques of Trend
Google Scholar
102
-
Analysis for Monthly Water Quality Data. Water Resources
Google Scholar
103
-
Research, vol. 18 no. 1: 107-121. 1982.
Google Scholar
104
-
D. R. Helsel and R. M. Hirsch RM. Statistical Methods in Water
Google Scholar
105
-
Resources Elsevier, NY. 1995.
Google Scholar
106
-
T. Salmi, A. Maatta, P. Anttila, T. Ruoho-Airola, T. Amnell.
Google Scholar
107
-
Detecting Trends of Annual Values of Atmospheric
Google Scholar
108
-
Pollutants by the Mann-Kendall Test and Sen’s Slope
Google Scholar
109
-
Estimates—The Excel Template Application MAKESENS;
Google Scholar
110
-
Finnish Meteorological Institute: Helsinki, Finland. 2002.
Google Scholar
111
-
N. H. Christiansen, N. H. Voie, P. E. T. Winther, O. J. Høgsberg.
Google Scholar
112
-
Comparison of Neural Network Error Measures for
Google Scholar
113
-
Simulation of Slender Marine Structures. Journal of Applied
Google Scholar
114
-
Mathematics vol. 2014, Article ID 759834, 11 pages.
Google Scholar
115
-
http://dx.doi.org/10.1155/2014/759834. 2014.
Google Scholar
116
-
T. Nakama. Comparisons of Single- and Multiple-Hidden-
Google Scholar
117
-
Layer Neural Networks. In: Liu D, Zhang H, Polycarpou
Google Scholar
118
-
M, Alippi C, He H. (eds) Advances in Neural Networks –
Google Scholar
119
-
ISNN 2011. ISNN 2011. Lecture Notes in Computer
Google Scholar
120
-
Science, vol 6675. Springer, Berlin, Heidelberg.
Google Scholar
121
-
E. D. Sonntag. Feedback stabilization using two-hidden-
Google Scholar
122
-
layer nets. IEEE Transactions on Neural Networks, vol.3:
Google Scholar
123
-
–990. 1992.
Google Scholar
124
-
F. Lolli, R. Gamberini, A. Regattieri, E. Balugani, T. Gatos,
Google Scholar
125
-
S. Gucc. Single-hidden layer neural networksfor forecasting
Google Scholar
126
-
intermittent demands. International Journal of Production
Google Scholar
127
-
Economics, vol. 183 no. A: 116-128. 2016.
Google Scholar
128
-
https://doi.org/10.1016/j.ijpe.2016.10.021. 2016.
Google Scholar
129
-
O. Mahmoud, O. Anwar, F. E. S. M. Jimoh, Learning Algorithm
Google Scholar
130
-
Effect on Multilayer Feed Forward Artificial Neural Network
Google Scholar
131
-
Performance in Image Coding. Journal of Engineering Science and
Google Scholar
132
-
Technology, vol. 2 no. 2: 188–199. 2007.
Google Scholar
133