##plugins.themes.bootstrap3.article.main##

The thermal relief regions for maximum animals are ranged 4 °C and 25 °C. In tropical and subtropical countries ambient temperature surpasses 25° C and animals undergo high environmental temperatures. Most physiological and biochemical variations in animals could take place to care for essential cell functions in contradiction of stressful conditions and to certification a fast retrieval from modest hypothermic destruction. Animal performance is reduced due to extreme variations in biological purposes affected by heat-stress conditions.

References

  1. A. A. M. Habeeb, A. A. El-Tarabany, A. E. Gad and M. A. Atta, “Negative Effects of Heat Stress on Physiological and Immunity Responses of Farm Animals,” International Technology and Science Publications (ITS),Agricultural Studies, vol.2, no.1, pp.1-18, 2018a. DOI:10.31058 /j.as. 2018.21001.
     Google Scholar
  2. A. A. M. Habeeb, A. E. Gad , A. A. EL-Tarabany and M. A. A. Atta, “Negative Effects of Heat Stress on Growth and Milk Production of Farm Animals”, Journal of Animal Husbandry and Dairy Science, vol. 2, no.1, pp. 1-12, 2018b.
     Google Scholar
  3. F. Wiersma, “Department of Agricultural Engineering”. The University of Arizona, Tucson, 1990. (Cited in Armstrong, 1994).
     Google Scholar
  4. A.A.M. Habeeb, I.F.M. Marai and T.H. Kamal, “Heat stress, Chapter 2 In Farm Animals and Environment, edited by CJC Philips and D. Piggins, Commonwealth Agriculture Bureau International, Wallingford United Kingdom, pp. 27- 47, 1992.
     Google Scholar
  5. A. J. McMichael, M. Ando, R. Carcavallo, P. Epstein, A. Haines, G. Jendritsky, L. Kalkstein, S. Kovats, R. Odongo and J. Patz, “Climate change and human health”, an assessment by a task group on behalf of the WHO, the World Meteorological Organization, and the United Nations Environment Program, (WHO/EHG/96.7), Geneva, 1996.
     Google Scholar
  6. A. J. Berman, “Estimates of heat stress relief needs for Holstein dairy cows”, Journal of Animal Science, vol. 83, pp.1377–1384, 2005.
     Google Scholar
  7. A. Berman, Y. M. Folman, M. Kaim, Z. Mamen, D. Herz, A. Wolfenson and Y Grabber, “Upper critical temperatures and forced ventilation effects for high-yielding dairy cows in a tropical climate” Journal Dairy Science, vol. 68 pp.488-495, 1985.
     Google Scholar
  8. T. Hamada, “Estimation of lower critical temperatures for dry and lactating dairy cows” Journal Dairy Science, vol. 54, PP.1704-1705, 1971.
     Google Scholar
  9. M. O. Igono, B. J. Steevens, M. D. Shanklin and H. D. Johnson “Spray cooling effects on milk production, milk and rectal temperatures of cows during a moderate temperature summer season”, Journal Dairy Science, vol. 68, PP. 979-985, 1985.
     Google Scholar
  10. R. J. Collier, R. B. Zimbelman, R. P. Rhoads and M. L. Rhoads, “A re-evaluation of the impact of temperature humidity index (THI) and black globe humidity index (BGHI) on milk production in high producing dairy cows”, Western Dairy Management Conference; March 9-11 Reno, NV., pp. 113-140, 2009.
     Google Scholar
  11. M. O. Igono, G. Bjotvedt and H. T. Sanford Crane, “Environmental profile and critical temperature effects on milk production of Holstein cows in the desert climate”, International Journal of Biometeorology, vol. 36, pp. 77-87, 1992, doi: 10.1007/BF01208917.
     Google Scholar
  12. D. V. Armstrong, “Heat stress interactions with shade and cooling”, Journal Dairy Science, vol. 77, pp. 2044-2050, 1994. doi: 10.3168/jds.S0022-0302(94)77149-6.
     Google Scholar
  13. J. Praks, “The effect of temperature stress on dairy cows”. Veterinary ruminants, 2010, (http://www.guaranteed weather. com/page .php? content_id =25).
     Google Scholar
  14. I. F. M. Marai and A. A. M. Habeeb, “Buffalo’s biological functions as affected by heat stress. A review”, Livestock Science, vol. 127, pp. 89-109, 2010a. doi: 10.1016/j.livsci.2009.08.001.
     Google Scholar
  15. I. F. M. Marai and A. A. M. Habeeb, “Review: Buffalo's reproductive and productive traits as affected by heat stress,” Tropical and Subtropical Agroecosystems vol. 12, pp. 193 – 217.
     Google Scholar
  16. A. A. M. Habeeb, A. E. Gad, F. E. I. Teama and A. A. EL-Tarabany, “Means of Alleviation the Negative Effects of Summer Heat Stress on Animals”, Journal of Animal Husbandry and Dairy Science, vol. 2, no. 1, pp. 37-61, 2018a.
     Google Scholar
  17. A. A. M. Habeeb, A. E. Gad and M. A. A. Atta, “Temperature-Humidity Indices as indicators to heat stress of climatic conditions with relation to production and reproduction of farm animals”, International Journal of Biotechnology and Recent Advances, vol. 1, no. 2, pp. 35-50, 2018b. DOI:10.18689/IJBR-1000107.
     Google Scholar
  18. A. Agarwal and M. Singh, “Impact of microclimatic modification on the production of dairy animals during summer”, Indian Dairyman, vol. 58, pp. 49-59, 2006.
     Google Scholar
  19. A. A. M. Habeeb, “Negative effects of heat stress conditions during the hot summer season in Egypt on rabbits productivity and alleviation of these effects using some supplementary nutrients”, International Journal of Agriculture and Biological Sciences, vol. 3, no. 6, pp. 1-15, 2019. Doi: 10.5281/zenodo. 3613521.
     Google Scholar
  20. A. A. M. Habeeb, “Impact of climate change in relation to temperature-humidity index on productive and reproductive efficiency of dairy cattle”, Boffin Access Limited, International Journal of Veterinary and Animal Medicine, vol. 3, no 1, pp. 124-133, 2020.Doi;10.31021/ijnam.20203124.
     Google Scholar
  21. International Commission for Thermal Physiology (ICTP), “Glossary of terms for thermal physiology”, 3rdeds. Japanese Journal of Physiology, vol. 51, pp. 245–280, 2001
     Google Scholar
  22. C. T. Kadzere, M. R. Murphy, N. Silanikove and E. Maltz, “Heat stress in lactating dairy cows: A review”, Livestock Production Science, vol. 77, pp. 59-91.
     Google Scholar
  23. J. B. Garner, A. Douglas, A. Williams, A. Wales, A. Marett, B. DiGiacomo, B. Leury B and C. D. Hayes, “Responses of dairy cows to short-term heat stress in controlled-climate chambers”, Animal Production Science, vol. 57, no. 7, pp. 1233-1241, 2017.
     Google Scholar
  24. A. C. Guyton, “Textbook of medical physiology”. 3rd (Saunders, W. B., ed.), Co. Philadelphia, pp. 985- 992, 1969.
     Google Scholar
  25. R. P. Rhoads, L. H. Baumgard, J. K. Suagee and S. R. Sanders, “Nutritional interventions to alleviate the negative consequences of heat stress”, Advanced Nutrition, vol. 4, no. 3, pp. 267–276, 2013.
     Google Scholar
  26. S. Hamzaoui, A. A. K. Salama, G. Caja, E. Albanell, C. Flores and X. Such, “Milk production losses in early lactating dairy goats under heat stress”, Journal Dairy Science, vol. 95, no. 2, pp. 672–673, 2012.
     Google Scholar
  27. O. K. Hooda and S. Singh, “Effect of thermal stress on feed intake, plasma enzymes and blood biochemical in buffalo heifers”. Indian Journal of Animal Nutrition, vol. 27, no. 2, pp. 122–127, 2010. https://doi.org/10.1071 /AN16472.
     Google Scholar
  28. N. Lacetera, U. Bernabucci, B. Ronchi and A. Nardone, “Body condition score, metabolic status and milk production of early lactating dairy cows exposed to a warm environment”, Review Agriculture Subtropical and Tropical, vol. 90, no. 1, pp. 43–55, 1996.
     Google Scholar
  29. A. A. M. Habeeb, M. Kh. Ibrahim and H. M. Yousef, “Blood and milk contents of triiodothyronine (T3) and cortisol in lactating buffaloes and changes in milk yield and composition as a function of lactation number and ambient temperature”, Arab Journal of Nuclear Sciences and Applications, vol. 33, no. 2, pp. 313-322, 2000.
     Google Scholar
  30. D. R. Bray and R. Bucklin, “Recommendations for Cooling Systems for Dairy Cattle”, Fact Sheet DS-29. University of Florida Cooperative Extension Service, Gainesville, Florida 32611, 1996.
     Google Scholar
  31. R. E. McDowell, N. W. Hooven and J. K. Camoens, “Effects of climate on performance of Holsteins in the first lactation”, Journal Dairy Science, vol. 59, pp. 965-973, 1976.
     Google Scholar
  32. R. Yasothai, “Effect of climate on nutrient intake and metabolism and countered heat stress by nutritional manipulation”, International Journal of Science, Environment and Technology, vol. 3, no. 5, pp.1685-1690, 2014.
     Google Scholar
  33. A. Chandrahas and K. S. Das, “Heat stress and ameliorative measures in buffaloes”, Livestock International, vol. 2, pp. 5-8, 2015.
     Google Scholar
  34. O. Shalit, E. Maltz, N. Silanikove and A. Berman, “Water, Na, K, and Cl metabolism of dairy cows at the onset of lactation in hot weather”, Journal Dairy Science, vol. 74, pp. 1874-1883, 1991.
     Google Scholar
  35. N. Silanikove, “Effects of water scarcity and hot environment on appetite and digestion in ruminants: a review”, Livestock Production Science, vol. 30, pp.175-194, 1992.
     Google Scholar
  36. N. Silanikove “Effects of heat stress on the welfare of extensively managed domestic ruminants”, Livestock Production Science, vol. 67, pp. 1–18, 2000.
     Google Scholar
  37. U. Farooq, H. A. Samad, F. Shehzad and A. Qayyum, “Physiological responses of cattle to heat stress”, World Applied Sciences Journal, vol. 8, pp. 38-43, 2010.
     Google Scholar
  38. A. M. Abdel-Samee, A. A. M. Habeeb, T. H. Kamal and M. A. Abdel-Razik, “The role of urea and mineral mixture supplementation in improving the productivity of heat-stressed Friesian calves in the subtropics. Proceedings of the 3rd Egyptian-British Conference on Animal Fish and Poultry Production, Alexandria University, Alexandria, Egypt, vol. 2, pp. 637- 641, 1989.
     Google Scholar
  39. J. K. Miller, E. Brzezinska-Slebodzinska and F. C. Madsen, “Oxidative stress, antioxidants, and animal function”, Journal Dairy Science, vol. 76, pp. 2812–2823, 1993.
     Google Scholar
  40. G. Zalba, G. San Jose, M. U. Moreno, M. A. Fortuno, A. Fortuno, F. J. Beaumont, G. M. A. San José, J. C. Etayo and J. Díez, “Oxidative stress in arterial hypertension: role of NAD (P) H oxidase”, Hypertension, vol. 38, pp. 1395–1399, 2001.
     Google Scholar
  41. U. Bernabucci, B. Ronchi, N. Lacetera and A. Nardone, “Markers of oxidative status in plasma and erythrocytes of transition dairy cows during hot season”. Journal Dairy Science, vol. 85, pp. 2173-2179, 2002.
     Google Scholar
  42. A. A. M. Habeeb, M. N. Sharoud and F. E. I. Teama, “Effect of Pyrosol sprays with and without Taurine on growth and some physiological body functions of rabbits reared under different climatic conditions”, International Journal of Applied and Natural Sciences, vol. 3, no. 3, pp. 61-78, 2014.
     Google Scholar
  43. A. A. M. Habeeb, “Biosynthesis and Roles of Glutathione in heat Stressed Animals”, International Journal of Scientific Research in Chemistry, vol. 3, no. 5, pp. 91-98, 2018a
     Google Scholar
  44. A. A. M. Habeeb, “Oxidative Stress in Animals Exposed to Different Stressful Conditions”, International Journal of Nutritional Sciences, vol. 3, no. 2, pp. 1027-1029, 2018b.
     Google Scholar
  45. L. R. McDowell, “Recent advances in minerals and vitamins on the nutrition of lactating cows”, Pakistan Journal of Nutrition, vol.1, pp. 8-19, 2002.
     Google Scholar
  46. C. Castillo, J. Hernández, M. López-Alonso, M. Miranda and J. L. Benedito, “Values of plasma lipid hydroperoxides and total antioxidant status in healthy dairy cows: preliminary observations”, Archiv für Tierzucht, vol. 46, no. 3, pp. 227-233, 2003.
     Google Scholar