Level of Community Participation in Community-Based Urban Farming Development in Banjarbaru City, Indonesia

Hetty Maria, Luthfi Fattah, and Yusuf Azis

ABSTRACT

Community empowerment in the field of technology and the populist economy, the use of appropriate technology (TTG) has many advantages other than saving time, being able to increase production or processed products from the business that is run and optimally by transferring technology from sources to the community through empowerment. The purpose of the study was to determine: [1] the level of community participation in the implementation of urban agricultural development in the City of Banjarbaru and [2] the factors that influence participation in the implementation of urban agriculture in the City of Banjarbaru. The study used qualitative methods to examine the participant’s perspectives with an interactive and flexible strategy. Determination of the location purposively. The sampling technique is proportional random sampling. Data were analyzed using the following tests: [1] scoring method and [2] statistically to see the effect of each independent variable on the dependent variable using logistic regression. The results showed that most of the people had a high level of education and most had incomes>3 million to 5 million rupiah. Most people think that in the implementation of urban agriculture a two-way method is used. The level of community participation is already high. In the participation stage, the decision-making, implementation, and evaluation stages are high, while the enjoyment stage is low. Age, education level, income level as well as access and control are not significantly related to the level of community participation. Factors that have a significant relationship with the level of participation are the leadership style of the group leader and the influence of the driving factor.

Keywords: Appropriate technology, Community participation, Urban agriculture.

I. INTRODUCTION

The potential for agricultural development in Banjarbaru City is directly related to the development of increasing extensive residential areas in the suburbs. The conversion of agricultural land is a serious threat to security, food self-sufficiency and the sustainability of an urban area too. Generally, the conversion of agricultural land that occurs in Banjarbaru City area has turned into a residential area due to development pressures. The other hand, some urban areas still have agricultural potential which if developed can meet the food needs of its citizens. Meeting food needs is a positive aspect for the sustainability of an urban area. One of the characteristics of a sustainable urban area is an urban area that can promote food self-sufficiency and has a closed food cycle. This means that sustainable urban areas must be able to provide food needs for their citizens independently. Although agricultural land in Banjarbaru City is limited, several agricultural commodities still play an important role. The most superior food crop commodities are vegetable crops and then secondary crops. Superior vegetable crops in Landasan Ulin District. The superior palawija plants in addition to the Landasan Ulin sub-district are also superior in the Liang Anggang sub-district. Superior rice plants in Cempaka District. In the context of community empowerment in the field of technology and people's economy, the use of appropriate technology has many advantages because in addition to saving time, it is also able to increase production or processed products from the business being carried out and will be optimal if there is transfer of technology from sources to the community through empowerment. This has been done by the Banjarbaru City Government established an appropriate technology service post to facilitate farmers, farmer groups (GAPOKタン) in urban agricultural development in their respective farming locations. Therefore, this study aims to determine the level of community participation and find out factors affect the level of in the implementation urban agricultural development in Banjarbaru City.

II. MATERIALS AND METHODS

A. Place and Time of Research

This research was conducted on 6 (six) farmer groups located in the Banjarbaru City area. The choice of research location was determined purposively with the following
considerations: 1) Banjarbaru City is an area that develops community-based urban agriculture. 2) The farmer group has implemented Appropriate Technology (TTG).

B. Data Type and Source

The data collected in this study include primary and secondary data. Primary data is a source of research data obtained directly through interviews with respondents guided by a previously prepared questionnaire. Meanwhile, secondary data is data obtained from reports, records, and other supporting documents related to research, including reference books, activity reports, the internet, and the Central Statistics Agency (BPS) of Banjarbaru City. The secondary data in this study were obtained from the data processing of farmer group profiles to find out the general description of the location and the number of members of the farmer group in the research location.

C. Sampling Method

Population is the whole subject of the study [1]. Meanwhile, the population used in this study is all members of six farmer groups totaling 123 members. The sample is a portion or representative of the population studied [1]. Sampling is intended to obtain information about the object of study and can provide an overview of the population. Sample in this study used the proportional random sampling method, whatever a sampling technique where all members have the same opportunity becomes sample according to their proportions [2]. Subjects are less than 100, it is better to take all so that the research is a population study [1]. But if the number of subjects is large (more than 100 people) it can be taken between 10-15% or 20-25% or more. The number of respondents studied and there are not the same in each region, to obtain a representative sample, the collection of subjects carried out from each territory is determined to be balanced with the number. The determinate of the sampling was taken with the same proportion of the population in each farmer group used as a study sample, namely 30-35% of the number of members.

D. Research Variables

The object of this study is community participation in the development of community-based urban agriculture and factors that influence the community to participate in the development of community-based urban agriculture. Community participation in community-based urban agricultural development (Y) is a dependent variable, where the provisions of number 1 are categorized as high participation and number 0 as low participation. Meanwhile, the independent variables in this study were age (X₁), education level (X₂), income level (X₃), dummy level of the leadership style of the group leader (X₄), dummy level of influence of driving actors (X₅) and dummy level of access and control (X₆).

E. Research Hypothesis

The research hypothesis is a temporary answer to the problem, literature review, and basic theoretical and then tested through data collected in the field. Based on this, the research hypothesis is:

1) It is suspected that the level of community participation in community-based urban agricultural development in Banjarbaru City is in the high category.

2) It is suspected that the variables of age, education level, income level, leadership style level of group leader, level of influence of driving actors, and level of access and control affect community participation in the implementation of urban agricultural development in Banjarbaru City.

F. Data Analysis

To answer the first purpose of the study, namely the level of community participation in the implementation of urban agricultural development, a scoring method is used, where the answer items in each question are scored. Determination of the scoring method based on the Likert Scale. The Likert scale is used to measure the attitudes, opinions, and perceptions of a person or group of people about social phenomena [3]. The participation rate is the participation of members in all stages of group activities which include the stages of decision making, implementation, evaluation, and enjoying the results. The assessment of the participation rate is to add up the scores of each stage, namely a very high score of 5, a high score of 4, a score of 3 is sufficient, a score of 2 is low and a score of 1 is very low with a total of 13 question items so that the participation rate can be categorized into High, that is, a score of >39 and Low, which is a score of ≤39.

To answer the second objective, namely, the factors that affect the level of community participation in urban agricultural development, the Logit model is used. The logistic regression method is a method where dependent variables are logarithms of the probability of a situation with conditions or conditions for the existence of certain independent variables [4]. Model analysis and parameter estimation on the logit model are carried out in descriptive statistics of data, regress data using the Logit model, test the Logit model parameters, test the obtained model, and interpreting the results of data analysis.

III. RESULTS AND DISCUSSION

A. Characteristics of Respondents

1) Farmer’s Age

From the results of this study, the age of respondents ranged from 25-66 years, which presented in Fig 1.

According to WHO (World Health Organization) the grouping of productive ages based on the age classification is 20-60 years old, which is an adult or mature group, and >60 years old included in the elderly/unproductive age group. The largest percentage of farmers’ age from the data respondents to this study was in the productive age group, namely the age
of 25 to 60 years by 97.5% and the age of farmers>60 years as much as 2.5% of the less productive group. In this age context, which is a variable with a ratio scale, the results showed that the age variable with the value of 0.447>0.05 not significantly affect community participation.

2) Level of education
This study also distinguishes respondents based on characteristics related to their last education, which includes elementary, junior high, high school/vocational high school, Diploma, Bachelor, and others including master's level. The level of education of farmers is measured in units of years starting from the 6th to the 16th year in which the respondent farmers receive formal education until they graduate from college.

Characteristics of respondents based on education level show diversity. Most respondent farmers received a high school education/equivalent 45%. The education level of the respondents spread from elementary and junior high schools to as much as 52.5%. While the level of undergraduate education is only 2.5%. Of the 40 respondents who became the sample of this study, there were no respondents who did not go to school. The following is the respondent's data based on his last education in a Fig. 2.

![Education level of respondents](image)

The results show the value of sig 1>0.05, so accept H0 which means that the level of education has no significant effect on the level of community participation. This is also seen in the Wald step 5 test (last model) the education level variable automatically deleted because it does not significantly affect the dependent variable, namely the level of community participation.

3) Level of income
The income level of respondents grouped into three groups consisting of respondents with an income of IDR 1,000,000, up to IDR 3,000,000, income> IDR 3,000,000, up to IDR 5,000,000, and respondents' income> IDR 5,000,000, from Fig. 3, the income level> IDR 3,000,000, to IDR 5,000,000, is the largest group with a percentage of 52.5%. Only 5% have an income level of IDR 1,000,000, up to IDR 3,000,000. As much as 42.5% of the income level> IDR 5,000,000. Based on income level data most respondents are high-income. The results of the analysis showed a sig value of 1>0.05, so receiving H0 means that the income level does not have a significant effect on the level of community participation.

This is also seen in the Wald test step 5 (the last model) the income level variable is automatically erased because it does not significantly affect the bound variable, namely the level of community participation.

B. Level of Community Participation in Community-Based Urban Agricultural Development

1) Level of community participation at the decision-making stage
The results of the research at this decision-making stage were seen from the presence of respondents in every farmer group meeting every month. The participation of respondents in participating in the meeting/preparation of an activity plan is a decision-making stage that includes the participate and activeness of respondents in the meeting. Respondents whose attendance ranges from 2-3 times a month will be said to be active or high participate. As for respondents whose attendance is less than two times a month, they are said to be inactive or low in participation. Based on the results of scoring at the decision-making stage, the participation rate >25 was obtained by scores of 27 respondents or 67.5% and 32.5% with a score <25.

2) Level of community participation at the implementation stage
The results of the research at this stage of implementation seen from the activeness of giving suggestions/criticisms in the performance of activities, actively following the activities that has determined, namely always being present in every activity carried out. The results of scoring at the implementation level participation rate, a score was obtained >9 amount 34 respondents or 85% and 15% with score <9.

3) Community participation rate at the evaluation stage
The level of Community Participation at this evaluate stage is seen from the participation in monitoring and supervise the suitability of plans and the implementation and report that has determined. Based on the results of the scoring at the evaluation stage, the participation rate was obtained >9 as many as 36 respondents or 90% and 10% with a score <9.

4) Community participation rate at the stage of enjoying results
The level of community participation at this stage of enjoying the results is seen from the existence of the results of the implementation of activities, feeling the benefits obtained and playing a role in maintaining the results of the practice activity. Based on the results of the scoring at the evaluation stage, the participation rate obtained a score >9 of 15 respondents or 37.5% and 62.5% with a score <9.

Participation is the active involvement of a person in participating in an activity. The level of community participation in the development of community-based urban agriculture obtained known through the responses of 40 respondents answer the questions in questionnaire. A measure that states the level of community participation is to
sum the total scores at the stages of participation obtained from each respondent. The overall scores of all stages of the participation rate showed as many as 33 respondents participating high with scores >39 and only 7 respondents with scores <39 low participants shown in Table I.

TABLE I: THE LEVEL OF COMMUNITY PARTICIPATION IN URBAN AGRICULTURAL DEVELOPMENT PROGRAMS

<table>
<thead>
<tr>
<th>Level of participation</th>
<th>Person</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low participation</td>
<td>7</td>
<td>17.5</td>
</tr>
<tr>
<td>High participation</td>
<td>33</td>
<td>82.5</td>
</tr>
</tbody>
</table>

Table I shows the active participation of respondents at 82.5% categorized high participation rate. The high level of participation is due to the majority of individuals always existence citizen meeting, being involved in program preparation and decision making, discuss proposals or opinions, actively contribute to conceptual ideas, money, skill, participating in monitoring and supervising from plans, implementation to reporting activities. Meanwhile, 17.5% had a low participation rate because it contradicted the previous statement. This difference in participation rates is seen at the time the stage of enjoying the results.

C. Regression Analysis

In this study, all cases or cases were observed with as many as 40 samples, no samples were missing. The output of the Case Processing Summary in Table II.

TABLE II: CASE PROCESSING SUMMARY

<table>
<thead>
<tr>
<th>Unweighted Cases*</th>
<th>N</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected</td>
<td>40</td>
<td>100.0</td>
</tr>
<tr>
<td>Cases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing Cases</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
<td>100.0</td>
</tr>
<tr>
<td>Unselected Cases</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
<td>100.0</td>
</tr>
</tbody>
</table>

*If weight is in effect, see classification table for the total number of cases.

Logistic regression analysis uses Backward Stepwise (Wald) to remove variables that do not significantly affect the bound variables to obtain the best model. Results of the SPSS output in this study are attached. The following are the results of the Logistic Regression Model Test produced:

1) **Simultaneous Test**

Simultaneous tests can be seen in the SPSS results for the iteration history table. With α=0.05 and degree of freedom (df)-K=33, where k is the number of free variables, \(\chi^2_{(p)} \) from the chi-squared table of 2.920 is obtained. Because of \(-2(\text{Log} L_0 - \text{Log} L_1) > \chi^2_{(p)} (16.349) > (2.920)\) it can be concluded that together (simultaneously), only 2 free variables on step 5 have a significant effect on variable Y (Table III).

2) **Overall Test**

The overall test can be done by looking at the Omnibus Test in the SPSS output results. The results are as follows:

TABLE III: LOGISTIC REGRESSION MODEL SIGNIFICANCE TEST RESULTS

<table>
<thead>
<tr>
<th>Statistic test</th>
<th>Omnibus Test</th>
<th>Hosmer Lemeshow test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sig</td>
<td>0.00</td>
<td>0.581</td>
</tr>
<tr>
<td>α</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Reject H0</td>
<td>Sig=α</td>
<td>Sig=α</td>
</tr>
</tbody>
</table>

•Hypothesis:
 H₀: No variable X significantly affects variable Y.
 H₁: There is at least one variable X that significantly affects variable Y.
•Significance level: α=0.05.
•Critical area: Reject H₀ if sig<0.05.
•Test Statistics: Sig.=0.
•Test Decision: based on the Omnibus Test table above it can be seen that sig=0,000 which means less than 0.05 so reject H₀.
•Conclusion: it is seen that the G² value is 16.349 with a p-value of 0 (Model) which means that with a confidence level of 95%, there is at least one free variable that affects the bound variable. So, it can be concluded that the model can be used for further analysis.

3) **Hosmer Lemeshow Testing**

This test is performed to see if the resulting regression model is capable of explaining the data. The test results are explained as follows:

•Hypothesis:
 H₀: The model is appropriate and capable of explaining the data.
 H₁: The model is not sufficiently capable of explaining the data.
•Significance level: α=0.05.
•Critical area: Reject H₀ if the sig <0.05.
•Test Statistics: Sig.=0.581.
•Decision: sig value=0.581>0.05, then H₀ cannot be rejected.
•Conclusion: with a confidence level of 95%, H₀ cannot be rejected. So, it can be concluded that the logistic regression model used in step 5 has been able to explain the data.

4) **Nagelkerke R-Square**

Cox and Snell R Square are measures that try to mimic the size of R² in multiple regressions based on the likelihood estimation technique with a maximum value of less than one making it difficult to interpret. Nagelkerke R Square is a modification of Cox and Snell's coefficients to ensure that its value varies from 0 to 1. This is done by dividing the values of Cox and Snell's R Square by their maximum values.

Based on the SPSS output in the summary model, the Cox Value and Snell's R Square=0.336 and the Nagelkerke R Square value=0.555 which means the variability of the diversity of the variable Y which can be described by variable X is 55.50 percent. while the remaining 44.50 percent is explained by variables outside the variables in this study.

5) **Classification plot**

Table IV show that the logistic regression model used was able to guess a high community participation rate of 97.0%, and overall was able to correctly guess 92.5% of the conditions that occurred.

TABLE IV: CLASSIFICATION MODEL

<table>
<thead>
<tr>
<th>Level of Participation</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>71.4</td>
</tr>
<tr>
<td>High</td>
<td>97.0</td>
</tr>
<tr>
<td>Overall Percentage</td>
<td>92.5</td>
</tr>
</tbody>
</table>
6) Partial Test

Partial tests performed to see the significance of each free variable against the bound variable. Variables with sig value<5% will be removed from the model because it doesn’t significantly affect the variable level of community participation (hypothesis zero is rejected because sig>5%). Based on the results of SPSS using the Backward Stepwise (Wald) method, in step 5 variables were obtained that significantly affected variable \(Y \), namely the variable leadership style of the group leader and the influence of driving actor (Table V).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Wald</th>
<th>Sig</th>
<th>Exp (B)</th>
<th>Decision</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>X4_DLeader</td>
<td>4.197</td>
<td>0.041</td>
<td>0.093</td>
<td>Reject H0</td>
<td>Significant</td>
</tr>
<tr>
<td>X5_DInfluen cer</td>
<td>4.113</td>
<td>0.043</td>
<td>0.077</td>
<td>Reject H0</td>
<td>Significant</td>
</tr>
<tr>
<td>Constant</td>
<td>11.037</td>
<td>0.001</td>
<td>42.549</td>
<td>Reject H0</td>
<td>Significant</td>
</tr>
</tbody>
</table>

X4 or the leadership style of the group leader has a Sig Wald value of 0.041<0.05 so rejecting \(H_0 \) or which means the leadership of the group leader exerts a significant partial influence on the level of participation in society. X5 or the actuator has a Sig Wald value of 0.043<0.05 so rejecting \(H_0 \) or which means the driving actor exerts a significant partial influence on the participation level of society. The magnitude of the influence is indicated by the value \(\text{EXP (B)} \) or also called ODDS RATIO (OR). Odds value ratio/\(\text{EXP (B)} \) in Table V means the ratio of the occurrence of category i compared to category 1. In this case, the Odds Value ratio/\(\text{EXP (B)} \) of the variable \(D_1 \) (1)=0.093 means that the tendency of the leadership style of the group leader increases the participation of society 0.093 times in the development of urban agriculture. Whereas the Odds value of ratio/\(\text{EXP (B)} \) of the variable \(D_2 \) (1)=0.077 means that the tendency of the influence of the driving actor in the development of urban agriculture 0.077 times will increase the participation of society. Based on the values of \(B \) on the calculation of the SPSS output data, then the equation model is formed as follows:

\[
\text{Ln P/1-P = 3.761 + 0 age + 0 education + 0 income - 2.374 leadership - 2.564 driving actors + 0 access control}
\]

D. Influential Factors

The age factor certainly influences a person's ability to participate. Some facts also indicate that age affects a person's 205 activeness to participate. There is a relationship between age and a person's membership participating in a group or organization [5]. However, this is contrary to the calculation obtained, namely in step 5 there is no age variable. There is no difference in the age of respondents to community participation in urban agricultural development, this agrees with [5], that a person is said to be mature or mature to do something activity not only measured by age level but judging by his level of thinking. It is not uncommon for a person who has a mature age, to have a low level of thinking. So, it was concluded that age does not have a significant relationship with the level of community participation in urban agricultural development in Banjarbaru City.

The effect of the level of education on the level of community participation in urban agricultural development based on the results of SPSS obtained a significant value of the level of education in step 2 of 0.970. This means that the level of education does not have a positive effect on the level of community participation in the development of urban agriculture in Banjarbaru City. The results of observations made in Banjarbaru City stated that people in Banjarbaru City who participated in urban agricultural development on average had a fairly good level of education with the last level of education completed, namely high school/equivalent of 45 percent. This is also supported by research conducted by [6] which states that the level of education is significantly related to community participation, the higher a person's level of education, the higher a person's chances of participating. This is because someone who is higher educated has broader insight and can understand various implementations of government programs and it is easy to provide information and guidance. However, [7] mentioned that the higher a person's education, the lower the participation rate, because the more alternatives for him to look for activities outside of an activity.

The income level does not significantly affect the variable level of community participation in urban agricultural development in Banjarbaru City. Which means resulting in a decision to accept \(H_0 \), or there is no meaningful relationship between the level of income and the level of participation the community. Indicates no difference in high community participation in urban agricultural development when viewed from the income level community. The results of this study are different from some studies that have existed. The level of income does not affect community participation. The general assumption is that people who large/high incomes will have more free time and will no longer be busy looking for additional income, so they are more actively involved in urban agricultural development, for example in terms of attending program meetings. The results of this study are different it's idea that the income level of respondents tends to vary in several sectors other than agriculture, there are trade, buildings, and services too.

Testing the relationship between the leadership style of the group leader and the level of community participation resulted in the decision to reject \(H_0 \), so it can be said that people with a certain leadership style tend to have a level of participation in urban agricultural development in Banjarbaru City. Leadership style is measured by several abilities of the leader including the leader's ability to accommodate aspirations and foster relationships with members, the ability to make decisions, divide tasks and work, and organize and discipline members. Leaders in farmer groups have shown a good leadership style and are also relatively high. From the results of the test above, it showed that in general, the leadership style of the group leader towards the level of community participation in urban agricultural development is quite capable of recognizing and capturing the needed for its members and able to channel these aspirations into a proposed appropriate technology activity (TTG).

It certainly has positive impact on the community because of their voluntary involvement in a positive and profitable activity. Leaders must be able to influence and urge their subordinates, have openness to new views, be responsive to
the needs of subordinates and support the implementation of innovations [8]. In addition, leadership is the process of directing and influencing activities related to the duties of the members of group. From this opinion the presence of a leader is very important in influencing and urging the community or citizens to participate in the development of urban agriculture.

Agricultural extension workers are the driving actors. The role of extension workers is extraordinary in assisting farmers to be willing and able to implement the technological innovations of researchers to boost agricultural productivity and production.

The results showed that agricultural mobilizers/extension actors had significant effect on the level of participation. The magnitude of the influence of driving actors/extension workers on the level of participation in urban agricultural development is due to farmers feeling that they really need the presence of agricultural extension workers in supporting their farming activities, the needs of agricultural extension workers related to land use, the use of technology, the dose of fertilization of crops in accordance with plant needs, determining planting distances, pest and disease control and solving problems faced by farmers. This high level of participation is closely related to the presence of extension workers in helping, so the presence of agricultural extension workers is recognized to be very helpful for farmers to carry out their activities. Various extension methods applied by extension workers can continuously make farmers aware of uninhibited in-efficient farming patterns and switch to better and modern business patterns to increase the productivity of their farming business. It is in accordance with the duties and functions of extension workers stated by Mosher [9] that extension activities are necessary to facilitate agricultural development.

Based on the results of the chi-square test of three internal factors and three external factors, namely the leadership style of the group leader, the influence of the driving actors and the level of access and control that is suspected to be related to the level of participation of the community in urban agricultural development, it turns out that only the leadership of the group leader and the influence of the driving actor have a relationship, while the age, level of education, income level and level of access and control have no relationship with community participation rates.

IV. CONCLUSION

The level of community participation in urban agricultural development is high with a level of 82.5% from 40 respondents. 6 factors influence community participation with the main factors being the leadership style of the group leader and the influence of the driving actor based on logistic regression analysis. This leadership style can recognize and capture the needs of its members and can channel aspirations. Actors/extension workers are needed to support their farming activities, such as land use, technology utilization, plant fertilization doses according to plant needs, determining plant spacing, controlling pests and diseases, and solving problems faced by farmers. The Banjarbaru City Government must maintain and increase community participation which is already high by conducting socialization with urban farming commodities, planting media, skills, and expertise as well as technological innovations in both cultivation and food processing. The award is given to residents who apply good urban agricultural management with appropriate technology. The driving actors not only facilitate groups but also farmers individually.

REFERENCES

Hetty Maria was born in Hulu Sungai Utara Regency on June 6, 1977. She completed her formal education at Lamphong Kanan State Elementary School (SDN) in 1989, Lamphong State Junior High School (SMP) in 1992, and State High School (SMA) 1 Amuntai in 1995. She continued her Bachelor (S1) degree at the Faculty of Forestry, Lambung Mangkurat University, Banjarbaru, and completed in 2001. In 2019 the author continued her education to Postgraduate Program at the Master of Agricultural Economics Study Program, Lambung Mangkurat University, Banjarbaru, South Kalimantan.

The author works at the Agricultural and Fisheries Food Security Service (DKP3) of Banjarbaru City since 2010 until now. Author's Position as Sub-Coordinator of Food Consumption Diversity in the Field of Food Security DKP3 Banjarbaru City.