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Abstract — The aim of this work was to explore the behavior 

and usability of the new model SAFERNAC over coffee growing 

areas throughout Tanzania. Soil fertility data from 1,131 

georeferenced points in three zones were fed into the model 

under four distinct approaches – baseline (no input), organic 

(manure), inorganic (NPK) and combination of manure and 

mineral fertilizer. The simulated yields were descriptively 

compared per zone. They were loaded into QGIS 3.2, 

interpolated using the Inverse Distance Weighting (IDW) 

algorithm and the resultant raster maps clipped on basis of 

digitized boundary shapefiles. Baseline yields were effectively 

computed from 99.2% of the surveyed sites. The model showed 

high sensitivity to pH, which has a greater influence on P than 

N or K. Calculated yields decreased in the order Zone 2 > Zone 

1 > Zone 3. The difference in yield between NPK 160:80:80 alone 

and a combination of NPK 80:40:40 (half dose) plus 5 tons 

manure was neither quantitatively nor spatially significant. 

SAFERNAC has proved its usability across the Tanzanian 

coffee soils, in simulating yield of parchment coffee. The 

combination approach (organic materials and mineral 

fertilizers) is most appropriate, as it can reduce the fertilizer cost 

by about 50% without seriously compromising the expected 

yields. 

 

Index Terms— Coffee yields, soil fertility data, 

spatialization, SAFERNAC, Tanzania 

 

I. INTRODUCTION 

A new model called SAFERNAC (Soil Analysis for 

Fertility Evaluation and Recommendation on Nutrient 

Application to Coffee) was recently developed by scientists 

from Tanzania Coffee Research Institute, Sokoine University 

of Agriculture and Wageningen University, the Netherlands 

[1]. The model was built by calibration of an earlier generic 

model QUEFTS [2]-[3] using the results of two field 

experiments at Lyamungu. The calibration was done in a 

process of fitting the coffee data stepwise and regressing the 

simulated yields against actuals to get the best fit at each step 

and the overall best fit. It has three components: SOIL (OC, 

total N, available P, exchangeable K and pH water), PLANT 

(physiological nutrient use efficiency, plant density and 

maximum yields per tree) and INPUT (organic and inorganic 

nutrients). It calculates baseline (no-input) parchment yield 

for quantitative soil fertility evaluation, and yield with inputs 

for fertilizer recommendation and economically optimum 

rates. The model was initially tested with soils of Hai and 

Lushoto Districts in Northern Tanzania and found to work 

well. According to [4]-[5], there are many incentives for 
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applying such a model on a regional scale, i.e. over an area 

larger than that for which it has been developed. This is 

termed “model spatialization”. The objective of this follow-

up work was therefore to spatialize SAFERNAC by exploring 

its behavior and usability across the coffee soils in Tanzania. 

 

II. MATERIALS AND METHODS 

Soil fertility data from 1,131 georeferenced sites were used 

for this study, as derived from an earlier study by [6]. For 

purposes of this work, the coffee growing zones were 

regrouped into three. Zone 1 included Arusha, Kilimanjaro, 

Manyara, Mara and Tanga regions, while Zone 2 covered 

Morogoro, Iringa, Njombe, Ruvuma, Mbeya and Songwe 

regions; and Zone 3 covered Kagera, Mwanza, Geita, Kigoma 

and Katavi regions as shown in Figure 1. In each zone, 

districts had been selected on merit of growing coffee and/or 

having history with coffee. The data involved in this 

particular study are the ones that constitute the SOIL 

component of the model [1]. The PLANT component was left 

as default: D = 1300 trees ha-1; fD =0.5486; PhE as 7 and 21 

kg parchment per kg N, 40 and 120 kg parchment per kg P, 8 

and 24 kg parchment per kg K at accumulation (a) and 

dilution (d) respectively. 

 
Fig. 1: Tanzania coffee zones (study sites in blue) 
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Soil pH was used to establish the correction factors for 

available N, P and K (fN, fP and fK) as in Equations 1-3.  

 

𝑓𝑁 = 0.25(𝑝𝐻 − 3)    (1) 

 

𝑓𝑃 = 1 − 0.5(𝑝𝐻 − 6)2    (2) 

 

𝑓𝐾 = 2 − 0.2𝑝𝐻    (3) 

 

Then relationships were empirically worked out between 

the correction factors, OC and the amount of total N, 

available P and exchangeable K to get the total available 

forms of each in kg ha-1 as in Equations 4-6.  

 

𝑆𝑁 = 𝑓𝑁 × 5 × 𝑂𝐶    (4) 

 

𝑆𝑃 = 𝑓𝑃 × 0.25 × 𝑂𝐶 + 0.5 × 𝑃𝐵𝑟𝑎𝑦  (5) 

 

𝑆𝐾 = 𝑓𝐾 × 400 ×
𝐾𝑒𝑥𝑐ℎ

𝑂𝐶
   (6) 

 

Available nutrients from inorganic fertilizers were 

calculated from their total application and recovery fraction 

(RF) which, for coffee, was set at 0.7, 0.1 and 0.7 for N, P 

and K respectively [7]. Those from organic materials had an 

additional factor called substitution value (SV), which, for 

cattle manure, was set at 0.6, 0.87 and 1.0 for N, P and K 

respectively, as derived from [8]-[9]. Total available nutrients 

(TX) was expressed as SX for baseline, SX+(IXi x RFx) for 

inorganic and SX+(IXo x SVo x RFx) for organic, where X 

stands for single nutrient N, P or K. Then pairwise nutrient 

uptake was calculated as in Equation 7. 

 

𝑈1(2) =
𝑇𝐴1−0.25(𝑇𝐴1−𝑇𝐴2×

𝑎2

𝑑1
)

2

𝑇𝐴2(
𝑑2

𝑎1
−

𝑎2

𝑑1
)

   (7) 

 

Where U1(2) is the uptake of nutrient 1 under ample supply 

of both nutrients 1 and 2, while TA1 and TA2 are total 

available nutrients 1 and 2. Corresponding yield estimates at 

maximum accumulation YXA and at maximum dilution 

YXD were calculated as in Equations 8 and 9.  

 

𝑌𝑋𝐴 = 𝑎𝑋 × 𝑈𝑋    (8) 

 

𝑌𝑋𝐷 = 𝑑𝑋 × 𝑈𝑋    (9) 

 

Pairwise yields Y1,2 were calculated as in Equation 10. 

 

𝑌1,2 = 𝑌2𝐴 + (
2(𝑌2𝐷 − 𝑌2𝐴)(𝑈1 −

𝑌2𝐴
𝑑1

𝑌2𝐷
𝑎1

−
𝑌2𝐴
𝑑1

) − (
(𝑌2𝐷 − 𝑌2𝐴)(𝑈1 −

𝑌2𝐴
𝑑1

𝑌2𝐷
𝑎1

−
𝑌2𝐴
𝑑1

)

2

 

                                                                                             (10) 

 

Where Y1,2 represents the yield response to nutrients 1 and 

2 within limits of the availability of nutrient 3. Such nutrients, 

according to the model, are N, P and K. Y represents yield, D 

the limit of dilution and A the limit of accumulation. U stands 

for the maximum possible uptake of a given nutrient. ‘a’ and 

‘d’ stand for the physiological efficiencies in kg parchment 

coffee per kg nutrient taken up, at accumulation and dilution 

levels respectively. 

Six yield estimates YNP, YNK, YPN, YPK, YKN and 

YKP were derived as above and their average taken as the 

final estimated yields. Further elaboration is given in [10].  

SAFERNAC was run four times in each location – the 

baseline approach, organics alone (in this case, cattle manure 

at 5 tons ha-1), inorganics alone (NPK 160:80:80) and 

organics with half dose of inorganics (NPK 80:40:40). 

Estimated mean yields per zone (including standard deviation 

and coefficient of variation) under the four different 

approaches were descriptively compared. 

The organized and georeferenced Excel data sheets were 

converted to GIS-workable shapefiles using ArcView GIS 

Version 3.2 [11]. The vector base map used was the Census 

Map of Tanzania at a scale of 1:2,000,000 [12]. The 

shapefiles were exported to QGIS 3.2 for further processing. 

To facilitate interpolation and reduce noise from the non-

coffee regions, boundary shapefiles for the three study zones 

were digitized. The point shapefiles were interpolated using 

the Inverse Distance Weighting (IDW) algorithm as in [13], 

and the resultant raster images were clipped on basis of the 

boundary shapefiles. The simulated yields at baseline (Ybase), 

organics (Yorg), inorganics (Yinorg) and organics with half dose 

inorganic (Ycombi) were interpolated. 

 

III. RESULTS 

A. Model behavior in different soils 

The SAFERNAC model was able to estimate baseline (no-

input) yields in 1,122 out of 1,131 locations surveyed, which 

is 99.2%. The rest, for which the model failed to calculate 

yields, were discounted from further analyses. Zone 1 had 

three sites Maji ya Chai in Arumeru (pH 7.81); Malindi and 

Mlalo in Lushoto (pH 7.82 and 4.51 respectively). Zone 3 had 

a total of six sites Heru Juu in Kasulu (pH 8.19), Ugaraba in 

Uvinza (pH 4.55 with another complication of low K), 

Lugonesi, Ilangu, Mazwe and Ifumbula in Mpanda with 

respective pH values of 3.87, 3.53, 4.03 and 4.26. These pH 

values are well beyond the limitations set for the model to 

work optimally (pH 4.5 to 7.0). The model appears overly 

sensitive to pH, which has a greater influence on soil-

available P than N or K. Whereas Equations 1 and 3 are linear, 

Equation 2 for fP is asymptotic with a curve of peak 1.0 at pH 

6.0 and touching the x-axis at pH 4.58 (lower end) and 7.42 

(upper end). Above or below those figures, the model gets 

“confused” in computing the soil-available P, giving negative 

values for both fP and SP. In Zone 2, no site was discounted 

because they all fell within the desirable pH range and 

baseline yields were estimated. Of the nine discounted sites, 

3 were affected in both baseline and organic approaches while 

the rest were affected in the baseline approach only. In the 

other approaches, especially those involving inorganic 

fertilizers, SAFERNAC was generally successful in 

computing the estimated yields; and this is an indication that 

the model sensitivity to pH is more to do with P availability 

and tends to diminish as fertilizer P is added. 

B. Descriptive comparison per zone 

After discounting the nine locations for which it was 

impossible to calculate baseline yields, a total of 494, 257 and 

371 locations remained in Zones 1, 2 and 3 respectively. Zone 
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1 had the widest range of 7.83-1268.59 kg ha-1, while other 

ranges for Zone 2 and 3 were 29.75-963.28 and 10.51-741.32 

kg ha-1 respectively. A generally high standard deviation 

(>100 kg ha-1) was noted across the approaches, indicating 

that the data are more spread out in space relative to the 

means. In all the approaches, calculated yields decreased in 

the order Zone 2 > Zone 1 > Zone 3. The difference in yield 

between NPK 160:80:80 alone and a combination of NPK 

80:40:40 (half dose) plus 5 tons manure was not significant, 

implying that use of organic matter can reduce the fertilizer 

cost by about 50% without seriously compromising the 

expected yields. 

The coefficients of variation (CV) for Zone 1 were 42.97%, 

30.79%, 31.13% and 25.67% for baseline, organic, inorganic 

and combination respectively. Similar trend was noted in the 

other zones with respective CVs of 42.09%, 28.99%, 23.42% 

and 23.04% for Zone 2; and 54.47%, 27.42%, 24.23% and 

21.24% for Zone 3. These trends imply that the variability of 

the estimated yields is high at baseline level (no input), 

decreasing to a minimum at combination level (organics and 

inorganics). 

C. Interpolation results for Zone 1 

Figure 2a (baseline) shows that about 85% of total land 

area is moderately fertile and capable of producing over 400 

kg ha-1, the bulk of which falling between 400-600 kg ha-1. 

The rest, including parts of Mara, Tanga and Babati, can 

produce 200-400 kg ha-1. Over 600 kg ha-1 are found in 

Karatu, with scattered patches around Mt. Meru and 

Kilimanjaro. Figure 2b (organic) shows substantial 

improvement with category 200-400 kg ha-1 diminishing. 

400-600 kg ha-1 is maintained in many places except in the 

volcanic areas of Kilimanjaro and large parts of Arusha 

Region, where estimated yields were in the range 600-800 kg 

ha-1. Figures 2 c and d (inorganic and combination) were 

apparently alike in many respects, with yields generally well 

over 600 kg ha-1. The only notable difference is the slight 

decrease in the area around Karatu, capable of producing over 

800 kg per ha with the application of manure and half dose of 

inorganic fertilizers. 

 

 
Fig. 2a. Estimated yield Zone 1 baseline. 

 
Fig. 2b. Estimated yield Zone 1 organic 

 

 
Fig 2c. Estimated yield Zone 1 inorganic 

 

 
Fig 2d. Estimated yield Zone 1 combination 

D. Interpolation results for Zone 2 

Figure 3a (baseline) shows, as in Zone 1, that about 90% 

of total land area is moderately fertile and capable of 

producing 400-600 kg of parchment coffee per ha. Pockets of 

land in Ludewa (Njombe) and Rungwe (Mbeya), and smaller 

ones in Songea, Mufindi and Kilolo can produce over 600 kg 

ha-1. The rest, including parts of Northern Morogoro, Iringa, 

Njombe and Songwe can produce 200-400 kg ha-1. Figure 3b 

(organic) shows substantial improvement with about 80% of 

the land now falling under category 600-800 kg ha-1. The rest, 

mostly in the 400-600 kg ha-1 category, includes most of 

Northern Morogoro with small patches in Mufindi and 

Songwe. The last two maps (Figures 3c and d) are visually 
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alike, with the bulk of the land well over 800 kg ha-1. The only 

difference is a slight increase in extent of higher categories 

(>1000 kg ha-1) in the combination map. 

 

 

Fig 3a. Estimated yield Zone 2, baseline 

 

Fig 3b. Estimated yield Zone 2, organic 

 

Fig 3c. Estimated yield Zone 2, inorganic. 

 

Fig 3d. Estimated yield Zone 2, combination 

E. Interpolation results for Zone 3 

This zone showed to be the least fertile of the three, capable 

of producing in the range 100-600 kg ha-1 without adding any 

input (Figure 4a). About 85% of the total land area can 

produce 200-300 kg ha-1. The north-western end of the 

country (Bukoba, Missenyi, Muleba and Karagwe) is a little 

better, producing 300-400 kg ha-1. Some pockets at Kigoma, 

Uvinza and large part of Mpanda could hardly reach 200 kg 

ha-1. Upon addition of manure (Figure 4b), substantial 

improvement is witnessed from a maximum of 600 to 800 kg 

ha-1, and the minimum from 100 to 200 kg ha-1. Remarkable 

improvement is shown in Geita, Sengerema and the whole of 

Kagera river basin (about 30%, producing above 600 kg ha-

1). The approximately 70% remaining can produce in the 

range 400-600 kg ha-1. The last two maps (Figures 4c and d) 

are visually alike. The only difference is a slight decrease in 

extent for the higher categories (>800 kg ha-1) for the 

combination map, especially around Ngara and Biharamulo. 

 

 

Fig 4a. Estimated yield Zone 3, baseline 

 

 
 

Fig. 4b. Estimated yield Zone 3, organic 
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Fig 4c. Estimated yield Zone 3, inorganic 

 

 
 

Fig 4d. Estimated yield Zone 3, combination 

 

IV. DISCUSSION 

A. Choice of methodology 

In Tanzania, coffee is grown in diverse geographical 

locations (see Figure 1), varying in soil types [14], climatic 

trends [15] and even management practices. SAFERNAC 

was developed on basis of plot data from Lyamungu, and then 

initially tested with a total of 116 georeferenced point data 

representing two districts in Zone 1 where the model was 

developed. From [4], the extension of scope to cover a total 

of 1,131 point data from 44 districts throughout Tanzania, 

termed spatialization or regionalization, is justified. Another 

spatialization approach, widely used by agronomists and 

meteorologists is remote sensing [16]-[17]. 

The prime purpose of SAFERNAC is to evaluate soil 

fertility and as such, the consideration of climate and 

management practices, reflecting what [18] did with GLAM 

model, and what [19] did with Spatial- EPIC model, was 

deemed unnecessary in this case. 

Estimated parchment yields, in kg ha-1, were descriptively 

and spatially assessed. The purpose of descriptive assessment 

was to compare zones in terms of natural soil fertility and 

response to the application of various inputs. Spatial 

interpolation, as well described by [20]-[21], was used for 

purposes of yield trend analysis for the four approaches. The 

latter uses the sampled points to predict the values at locations 

where no samples were taken, according to Tobler’s Law of 

Geography. It has been used successfully in many areas such 

as geology, hydrology [22], environment [23], mining, 

climatology and meteorology [24]-[25], biology [26], 

forestry, agriculture [27]-[28], etc. Spatial interpolation uses 

a variety of methods, and in this case [29] noted that to-date 

there is no rule of thumb on the most appropriate interpolation 

technique for certain situations though general suggestions 

have been published. In this study inverse distance weighting 

(IDW), one of the most widely used interpolation technique 

[13] was selected. It was also recommended by [24] as the 

best algorithm in representing rainfall variability in Annaba, 

Algeria; and by [26] in showing spatial variability of habitat-

forming sessile organisms in the marine ecosystems of 

Mexico. It was also used successfully by [27] to create maps 

of potential sugarcane yield distribution within TPC Sugar 

Estate boundaries using the FAO semi-quantitative land 

evaluation model [30]-[31]. 

The interpolated rasters were clipped on basis of 

administrative boundary shapefiles (regional boundaries) in 

which the sampled points were not evenly distributed. 

Sampling had focused on areas currently growing coffee or 

have any history with coffee, so the unsampled areas either 

have no history with coffee or were just skipped due to time 

and budget constraint. According to [21], the number and 

distribution of sample points can greatly influence the 

accuracy of spatial interpolation. This provides a point of 

caution on the use of the above maps, whereby users need to 

bear in mind that they give only the soil’s point of view and 

do not attempt to answer the question why currently there is 

coffee here and no coffee there. Places may have suitable 

soils but because of other limitations such as climate (which 

was not part of SAFERNAC), they would not be able to 

support the intended crop. 

B. Implication of the results 

SAFERNAC has demonstrated its capability to simulate 

parchment coffee yields in 99.2% of the surveyed sites. This 

is the fraction that satisfied the model assumptions and pre-

conditions. The estimated baseline yield variation per zone is 

an indication that soil fertility differs as well, following a 

decreasing trend Zone 2 > Zone 1 > Zone 3. This trend was 

rather unexpected because Zone 1 is supposed to be more 

fertile than Zone 2 from the lithological point of view. While 

Zone 2 is an intersection of the Usagaran-Ubendian systems 

of the Proterozoic eon with high grade metamorphic rocks 

(amphibolites and gneisses), most of Zone 1 is composed of 

more recent volcanic rocks of the Miocene age [32]-[33]. 

Because the data for Zone 2 were adapted from another 

project [34] whose objective was not land evaluation per se, 
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some bias in the distribution of survey locations is suspected, 

and we plan to re-do it in a more holistic manner that will 

include currently non-coffee areas with potential for new 

coffee establishment. 

The CV trends imply that the variability is high at baseline 

level (no input), corroborating the heterogeneity observed by 

[4], [14] as one of the bottlenecks of model spatialization. On 

the other hand, according to [35], CVs of up to 50% or more 

are common for many elements in soils when sampling is 

completely random. The CVs were decreasing variously from 

the maximum at baseline to the minimum at combination. 

This trend implies that the variation in soil fertility tends to 

smoothen up as external inputs are added by way of fertilizers 

and/or ameliorants. It also suggests a more stable situation 

with the ISFM combinations. Organic and inorganic nutrient 

sources are in complementarity. Whereas organic matter 

improves physical, chemical and biological processes in the 

soil [36], thereby enhancing root activity, application of 

inorganic fertilizers supplies energy required by 

microorganisms for organic matter mineralization [37]. The 

impact of this complementarity is higher yields, as noted by 

[38] for maize in Kenya. 

C. Comparison with other similar studies 

Model spatialization has been attempted by many 

researchers. Maize yield simulation was successfully done in 

various agricultural zones of Colombia using the AquaCrop 

model [39]. A  GIS-based Spatial-EPIC model was used by 

[19] to predict yield variability of maize, wheat and rice at 

provincial and state level in India, whereby it was 

demonstrated that all levels, from field to country or beyond, 

can be modelled for any crop productivity. In their part, [18], 

assessing the GLAM model with groundnuts across India, 

noted that the simpler the model is, the easier it will be to 

spatialize or extend over larger areas. SAFERNAC is simple 

enough, as it only requires soil properties and NPK fertilizer 

as inputs. For simplicity sake, plant related variables such as 

nutrient use efficiency, and management related ones such as 

plant density were worked out and adopted as default, 

whereas climatic variables were not considered. This 

simplicity has contributed to model usability in the coffee 

growing areas countrywide, with baseline yield effectively 

estimated in 99.2% of the surveyed sites. 

D. Perspectives of crop modelling  

Crop models are gaining popularity by the day, as decision 

support tools [40] and also for guiding research. In the latter 

case, [41] noted that models can contribute to identify gaps in 

our knowledge, thus enabling more efficient and targeted 

research planning. Many crop models are in use; some 

generic and others crop-specific. Examples of generic models 

(or model suites) are DSSAT [42], APSIM [43] and QUEFTS 

[2]; whereas examples of the crop-specific ones are 

PNUTGRO for peanuts [44], SIMBA for bananas [45], 

CANEGRO for sugarcane [46] and SAFERNAC for coffee 

[1]. However, as noted by [18] and [47], crop models are a 

crude representation of the real world. They are imperfect 

approximations to interactions between biotic and abiotic 

factors. In some situations, the uncertainties associated with 

choices in model structure, model inputs and parameters can 

exceed the spatiotemporal variability of simulated yields, 

thus limiting predictability. That’s why [41] cautioned users 

not to consider crop models as a panacea to all agricultural 

production problems. However, they admitted that an 

intensely calibrated and evaluated model can be used to 

effectively conduct research that would eventually save time 

and money; and significantly contribute to developing 

sustainable agriculture that meets the world’s needs for food. 

V. CONCLUSION 

In this work we explored the behavior and usability of a 

new model called SAFERNAC with the coffee soils across 

Tanzania. Soil fertility  data from  three defined coffee 

growing zones were subjected to the model following 

baseline (no-input), organic, inorganic and combination 

approaches. The model was able to estimate baseline yields 

in 99.2% of the survey locations. The rest did not qualify 

because they have pH values well beyond the prescribed 

limitations (pH 4.5 to 7.0). The model showed high 

sensitivity to pH, which has a greater influence on soil-

available P than N or K. Three sites failed in both baseline 

and organic approaches while six failed in the baseline 

approach only. In the other approaches, especially those 

involving inorganic fertilizers, SAFERNAC was generally 

successful in computing the estimated yields; and this is an 

indication that the model sensitivity to pH is more to do with 

P availability and tends to diminish as fertilizer P is added.  

In all the approaches, calculated yields decreased in the 

order Zone 2 > Zone 1 > Zone 3. On the other hand, in all the 

study zones, estimated yields increased in the order Baseline 

<<< Organic < Inorganic <= Combination. The application of 

5 tons of manure alone made a highly significant impact on 

yields. The difference in yield between NPK 160:80:80 alone 

and a combination of NPK 80:40:40 (half dose) plus 5 tons 

manure was not significant, implying that use of organic 

matter can reduce the fertilizer cost by about 50% without 

seriously compromising the expected yields. This was also 

evident with the maps generated, whereby there was not 

much visual distinction between the inorganic and 

combination maps. 

The model has therefore proved its usability across the 

Tanzanian coffee soils, in simulating yield of parchment 

coffee. The baseline (no input) approach is meant for coffee 

land evaluation which is of interest to potential investors who 

are looking for suitable land parcels for opening up new 

coffee farms. The organic approach is of interest to farmers 

who wish to indulge in organic farming whereas inorganic 

approach is for conventional farmers. The integrated soil 

fertility management (ISFM) approach that involves a 

combination of organic fertilizers (manures, composts and 

decomposed coffee by-products) and mineral fertilizers is 

appropriate for restoration and maintenance of soil health.. 
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