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I. INTRODUCTION 

Over several years, we have been developing various 

body-sensing systems to address challenges and drive 

innovation in the agricultural (agri-) field. Key aims include 

improved training, knowledge sharing/preservation, and 

security. However, existing methods and systems are not 

sufficient for in-depth analysis of human motion. In addition, 

they are often complicated and expensive. Where possible, 

we aim for low-cost and automatic solutions.  

To this end, we have been developing wearable sensing 

systems (WS) that can capture real-time three-axis 

acceleration and angular velocity data related to agri-worker 

motion in different environments, such as fields, meadows, 

and gardens. 

Fujii et al. [1] noted emerging problems concerning the 

critical shortage of young, beginner (novice) agri-workers 

and challenges in sharing knowledge and traditional farming 

approaches to experienced and inexperienced workers. At the 

same time, the field of agricultural informatics is expanding 

and advancing [1]–[10]. Such advancements often correlate 

with increased complexity of methodologies and systems.  

The existing literature does not cover concrete user 

suggestions for improving physical motions in agricultural 

work, especially for beginners and inexperienced agri-

workers. Therefore, our research aims to support such agri-

workers (and their daily activities) by applying electronic 

technologies, understanding of human dynamics, and 

statistical methods to provide workers with concrete feedback 

in a variety of formats, such as oral, visual, data, and written 

formats. 

In the future, we expect the increasing integration of 

several sensing techniques and existing large-size farming 

machinery, the latest IT services (such as cloud services), 

sensor devices, and other tools. There are efficiency and 

knowledge-sharing benefits for users and industry when an 

integrated approach or tool becomes ubiquitous in the field.  

With this in mind, we have been building integrated 

systems to enhance productivity, accuracy, and quality by 

recording and sharing traditional skills and approaches via 
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extracting and analyzing diverse agri-worker motion data. 

For in-depth analysis, we apply recent explainable artificial 

intelligence (XAI) methods based on SHapley Additive 

exPlanations (SHAP), Local Interpretable Model-agnostic 

Explanations (LIME), and Light Gradient Boosting Machine 

(LightGBM) [11]–[34]. Based on the results, we aim to 

identify indicators related to agri-skills and safety. 

We highlight two key considerations of using XAI as 

follows: 

1) The matching of dataset backgrounds, features, and 

tendencies 

Generally, background knowledge is essential to 

meaningfully analyze data and interpret key outputs. This is 

also true for the outputs of artificial intelligence (AI). We can 

only gain insight when we attach meaning to the data. 

However, in the absence of background knowledge, 

understanding the charecteristics in the datasets is important 

for interpreting results from an XAI-based system. 

2) Understanding which factors can be influenced 

We should not simply analyze and explain factual data 

with XAI. To appropriately apply XAI, it is essential to 

understand the dataset. For example, critical questions 

include who gathered the dataset? and what is the purpose of 

the dataset? 

 

II. METHOD 

A. Method 

We reviewed literature on industrial goods, patents, and 

academic papers. We also discussed our findings with agri-

informatics researchers, actual workers, and farmland 

managers. 

Based on what we learned, in this study, we combine our 

past achievements with recent XAI-based analysis 

methodologies. In light of recent XAI-trends, we describe 

five fundamental points concerning the evaluation of an 

XAI’s outputs: 

1) Description fidelity: An index for evaluating the extent 

to which the XAI for explaining complex AI models can 

reproduce the original AI model. 

2) Reliability of the description: An index c that evaluates 

the level of reliability of the explanation given by the XAI 

from the perspective of the person receiving the explanation. 

3) Satisfaction with description: An index to assess the 

extent to which the XAI is able to provide explanations that 

lead to user satisfaction. 

4) Mental model: A representation of how the explanation 

given by the XAI affects the recipient psychologically. An 

index is used for evaluation. 

5) Affinity for real systems and the real world: An index to 

evaluate the usefulness of the XAI in relation to AI in real 

systems. 

LightGBM is a model in which a large number of decision 

trees are connected in series. It is fast and highly accurate and 

has become increasing powerful in recent years. Owing to 

these characteristics and its applicability for predictive 

models with table data, we adopt it in this study.  

From our literature review, we identified a gap in 

considerations of such problems. We shaped our approach in 

light of our results [4]. 

We designed system constructs to measure and analyze 

acceleration and angular velocity data using general human 

dynamics and statistics approaches [5]–[10].  

After designing the system, we selected and applied some 

existing techniques and modules. We then performed indoor 

operational testing to evaluate the utility and suitability of the 

proposed system. During testing, subjects wore specially 

designed integrated structures with original WSs (Fig. 1 and 

2) [35]–[36].  

We categorized common agricultural tasks and selected 

one involving a semi-crouching position, i.e., digging with a 

hoe, because it is repetitive and requires full-body movement. 

Based on observations and discussions with key 

stakeholders, we set that every trial had 30 swings (digging 

up), and every subject performed three trials successively on 

the same day (Fig. 3). 

We selected fifteen subjects (Table Ⅰ) and gathered 

experienced (careered) and inexperienced workers without 

any known serious mental or physical limitations or special 

characteristics. This latter criterion was developed based on 

preliminary discussions with key stakeholders and 

observations of basic time-series data. It covered not having 

any serious diseases, remarkable habits, or specific careers 

(especially in sports and martial arts). The standard deviation 

(SD) values were higher for experienced workers than for 

inexperienced workers across all indices. 

In contrast to the literature, we aimed to capture and 

combine a broad scope of relevant information about agri-

worker features. Thus, we considered and selected major 

items (indicators) from statistics, human dynamics, and 

exercise physiology, as shown in Table Ⅱ.  

Some indicators, such as fitness habits, smoking habits, 

and backache, were developed and are used by the Japan 

Association of Industrial Health and other health 

organizations and are considered reliable. 

We also chose two specific scales, the Visual Analogue 

Scale (VAS) and the Borg Rating of Perceived Exertion 

(RPE) Scale, to measure worker fatigue and feelings against 

the strength of a task. The VAS uses a psychometric response 

scale as used in questionnaires to measure subjective 

characteristics or attitudes. Respondents specify their level of 

agreement with a statement by indicating a position along a 

continuous line between two endpoints. This continuous (or 

analogue) aspect of the scale differentiates it from discrete 

scales.  

The RPE measures perceived exertion in sports and 

particularly in exercise testing. In medicine, this scale is used 

to document a patient's exertion during a test, and sports 

coaches use the scale to assess the intensity of training and 

competition. The original scale rated exertion on a scale of 6 

to 20. 

 

 
Fig. 1. Microcomputers with various devices, store-bought sensing 

modules, and original vest-shaped and belt-shaped WSs. 
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Fig. 2. A subject equipped with measuring modules and knapsack with 

laptop PC connecting to various modules. 
 

After basic trials in outdoor fields, we defined some major 

indicators related to vertical acceleration and direction: 1) 

maximum value, 2) minimum value, 3) standard deviation 

(SD), and 4) direct current (DC) component concerning 

subjects’ hoe (hand) and waist [4]. Since these trials are 

preliminary, we selected major indices according to previous 

studies, such as Bao (2003) and other researchers. In 

particular, the SD and DC component are useful values for 

discriminating subjects and tasks. We also calculated and 

used large-sized a correlation matrix and performed an 

analysis of principal components because these are 

considered comprehensive methods to categorize and identify 

key data components.  
 

TABLE Ⅰ: SUBJECTS’ DATA 

Index 

Experienced 

N = 7 

Inexperienced, novice 

N = 8 

Range Ave S.D. Range Ave S.D. 

Age (year) 31 to 74 62.52 14.2 23 to 34 5.6 3.58 
Experience (year) 2 to 60 34 18.1 0 0 0 

Stature (cm) 155 to 173 164 5.5 170 to 180 174 3.2 

Weight (kg) 55 to 85 70 8.9 58 to 78 67 7.5 

 

 
Fig. 3. Timeline of the outdoor trials. 

 

TABLE Ⅱ. ITEMS IN SURVEY SHEET 

Category Index Range of score (point) 

Basic information 
Name, affiliation, occupation, stature, weight, 

pre-existing disease 
These depend on contents 

Low back pain (LBP)  

Experience of Low back pain 
No experience of LBP (0), Experience LBP in the past 
(1), Now having LBP (2) 

Frequency in the present workplace No (0), Sometimes (1), Frequently (2) 

Frequency in the past workplace No (0), Yes (1) 

Daily successive fatigue 
Frequency of continuing fatigue from the 

previous day 
No (0), Rarely (1), Sometimes (2), Always (3) 

Drinking and smoking 

habit 

Alcohol consumption 
No (0), A few times a month or a year (1), Everyday or a 
few times a week (2) 

Tobacco consumption Non-smoker (0), Past smoker (1), Smoker (2) 

Sport habit 
During spare time No (0) Yes (1) 
In the past Non (0), A little in the past (1), Regularly in the past (2) 

This trials' feeling of 

fatigue 

Indicators in VAS (Visual Analogue Scale) and 

RPE (Borg RPE Scale) test, and oral, general 
question 

VAS (0～100), RPE (6～20), and open-ended question 

Usability of the systems 
Load of the systems and the tasks, load of the 
work posture Fatigue of muscles 

Five-grade evaluation (0～5), and open-ended question 

 
TABLE Ⅲ: BASIC DATA AFTER ONE SET OF TRIALS 

Index 
Experienced Inexperienced 

Range Average SD Range Average SD 

VAS 0 to 68.1 28.2 24.6 0 to 73.6 26.8 23.3 

RPE 9 to 12 10.1 1.17 12 to 13 12.1 0.35 
Experience of LBP 0 to 1 0.38 0.48 0 to 1 0.57 0.49 

Frequency of LBP in the present 

workplace 
0 to 1 0.50 0.50 0 to 1 0.29 0.45 

Frequency of LBP in the past 

workplace 
0 0 0 0 to 1 0.14 0.35 

Frequency of continuing fatigue 
from the previous day 

0 to 2 1.25 0.83 1 to 2 1.86 0.35 

Alcohol consumption 0 to 2 1 0.87 0 to 2 1 0.53 

Tobacco consumption 0 to 2 0.63 0.70 0 to 1 0.14 0.35 
Sports habit during spare time 0 to 1 0.38 0.48 0 to 1 0.86 0.35 

Sports habit in the past 0 to 1 0.38 0.48 1 to 2 1.57 0.49 



 RESEARCH ARTICLE 

European Journal of Agriculture and Food Sciences  

www.ejfood.org  
 

 

DOI: http://dx.doi.org/10.24018/ejfood.2022.4.6.348   Vol 4 | Issue 6| November 2022 14 
 

B. Theory 

In this study, we utilize XAI-based methodologies and 

explore what is happening behind the algorithms. Although 

some studies have applied this to training methodologies, it 

has not previously been used in agri-research. 

1) SHAP is a technique for explaining individual 

predictions. It is based on the SHapley value in game theory. 

The goal of SHAP is to calculate and present the contribution 

of each feature to the prediction to help explain the prediction. 

SHAP uses cooperative game theory to calculate the 

SHapley values. The instance feature value behaves as part of 

the cooperating players. The SHapley value indicates the way 

that the reward can be distributed fairly among the feature 

values, where the reward is a predicted value. In the case of 

general matrix datasets, each player has a distinct feature 

value. In other cases, the players can be a set of feature values. 

For an example that describes an image, the pixels are 

grouped as super-pixels and the prediction is distributed 

among those groups. 

One of the innovations of SHAP is that the SHapley value 

is expressed as the sum of the effects of the feature quantities, 

such as in a linear model. The point, feature links LIME and 

SHapley values. SHAP provides the following explanation 

model, g: 

 

 

(1) 

 

where is a federated vector, M is the maximum size of the 

federated vector, and  0,1
M

z  is the feature attribute for 

feature j and the SHapley value.  

To calculate the SHapley values, we simulate the existence 

of only some feature quantities and assume that the others are 

absent. The united linear model’s representation is a 

technique for computing ϕ. For the concerned instance x, the 

federated vector xʹ is a vector whose elements are all 1. That 

is, all features can exist for the vector. 

2) The Local Surrogate Model is an interruptive LIME 

model used to describe individual predictions of black-box 

machine-learning models. With a surrogate model, we try to 

approximate the prediction underlying the black-box model. 

The use of a local rather than global surrogate model allows 

LIME to explain individual predictions. 

First, before considering the training data, we discuss the 

black-box model that returns a predicted value when data is 

entered. We can examine this black box as many times as we 

want. 

The aim is to understand why the machine-learning model 

returns certain predicted data. When the perturbation is added 

to the input data of a machine-learning model, LIME 

examines what changes occur in the predicted data. 

LIME replaces the feature values in the sample and creates 

a new resulting dataset, which helps to predict the black-box 

model outputs. Additionally, LIME learns an interpretable 

model based on this new dataset. The model is weighted by 

its proximity to the sampled or related instance. 

Various options are available for interpretable models, 

including Lasso and decision trees. Locally, the trained model 

approximates the predictive data of the machine-learning 

model; however, globally, it is not a good approximation. 

This type of accuracy is known as local fidelity. 

Mathematically, we express a local surrogate model with 

interpretable constraints as follows: 

 

 
(2) 

 

The explanatory model, for instance, x is a model g that 

minimizes losses such as the sum of squared errors. This is 

the loss L, which represents the extent to which the 

predictions of the original model f can be explained. The term 

Ω(g) indicates the complexity of this model and should be a 

smaller feature quantity. G is a possible explanation, such as 

all possible linear regression models. The proximity measure 

πx defines the size of the neighborhood used to account for 

instance x. 

However, LIME actually only optimizes the loss function. 

Through the process, we select the maximum number of 

features that the linear regression model uses, which is an 

indication of its complexity. Therefore, we need to determine 

its complexity. The local surrogate model is learned as 

follows. First, we select the instance where we desire to 

explain the black-box prediction. We obtain the predictions 

concerning the black boxes for new data points by perturbing 

the datasets. We then weight the new sample datasets 

according to their proximity to the instance of interest. In 

other words, we learn weighted, interpretable models on 

datasets created with intentionally added variations. We can 

then explain the predictions with interpretable local models. 

3) The LightGBM framework supports diverse algorithms 

(e.g., GBT, GBDT, GBRT, GBM, MART). 

LightGBM shares many advantages with eXtreme 

Gradient Boost (XGBoost), including sparse optimization, 

parallel training, multiple loss functions, regularization, 

bagging, and early stopping. For major differences between 

the two lies in the construction of trees, LightGBM does not 

grow a tree level-wise as most other implementations do. 

Instead, it grows trees’ leaf-wise; it chooses the leaf it 

believes will yield the largest decrease in loss.  

C. Program 

We describe each phase of the program as follows. 

Phase 1: 

1. Construct Python-language-based environment 

necessary for this trial. 

2. Install Required Libraries for XAI (e.g., LightGBM 

library). 

3. Select and install key analysis packages, such as: numpy, 

pandas, matplotlib, scikit-learn, seaborn, etc. 

4. Execute the basic mandatory processing of the target 

data (e.g., formatting). 

5. Read XAI-based systems. 

6. Check the size, format, etc. of the data in the output of 

the program in text format. At that time, if there is an error, 

return to step 4. 

7. Display the data in the system for visual confirmation. 

8. Perform statistical processing using pandas and seaborn 

functions, such as processing correlation variables between 

datasets and calculating categorical variables. 
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9. Check for missing data or other problems with the 

dataset. 

10. Display map data for correlation coefficients between 

diverse variables. 

11. Calculate, display, and check correlation coefficients 

between specific variables. 

Phase 2: 

1. Preprocess the table datasets for learning XAI models. 

2. Import libraries. 

3. Set fundamental, necessary variables and functions. 

4. Execute feature quantity calculations. 

5. Execute other tasks. 

6. Learn and output the model file. 

7. Use the model file after deep learning and check the data 

for accuracy. If the accuracy seems inappropriate, repeat the 

check and then return to step 1. 

Phase 3: 

1. Analyze the discriminant result when the predicted data 

is inputted to the trained model using LIME. Then, the basis 

of that judgment will be expelled. We discuss this further later 

in the paper. 

2. Make necessary preparations to use LIME in advance 

(e.g., import LIME’s fundamental libraries, prepare classes 

for explanation). 

3. Perform arithmetic processing for local explanations. 

4. Prepare the following LIME outputs: (1) visualization of 

various bar data, (2) acquisition in matplotlib format, and (3) 

acquisition of numerical data and shaping in the order of the 

original feature values. 

5. Visually confirm the validity of the output explanatory 

data. 

6. For other explanatory data, perform steps 1-5. 

Phase 4: 

1. Perform Phase 3 steps while varying the kernel width 

and check how much the contribution of the variable changes 

depending on the kernel width. (Kernel width is a weighting 

variable for adjusting the weight of random dummy data 

generated inside LIME; it indicates the degree of local 

explanation.) 

2. Generally, for such an analysis, the description results 

vary depending on the parameters. Furthermore, there is no 

quantitative index for judging which explanation is 

appropriate for LIME. Therefore, parameter setting should 

ensure the analyst and the user of the service can discharge 

explanatory data that they are satisfied with. 

 

III. RESULTS 

After performing the necessary verifications of the 

operation of each function of the system, we determined that 

the model’s performance seems appropriate only for actions 

not containing “moving over” (such as walking or cycling, 

which are untargeted in this study). The kernel width was set 

as follows by default: 

 

(Number of Explanatory variables)1/2 × 0.75 = Kernel width  

(3) 

 

Thus, in this trial, its value was set as 301/2 × 0.75 ≒ 4.18. 

Therefore, we decided to use a set of three values centered 

near the kernel width: 1.0, 4.0, and 8.0. For 

LimeTabularExplainer, it generates slightly different dummy 

data every time, that’s why we output datasets and present 

both the average and Standard Deviation (SD). 

(ⅰ) In Fig. 4, we show the results for the probability of 

prediction. We output a bar graph from the LIME analyses 

concerning basic information from subjects’ survey sheets 

and vertical acceleration of the hoe.  

Specifically, the system predicted that the probability of 

identifying an experienced subject is 0.48 and the probability 

of identifying an inexperienced subject is 0.52. We also 

present the SDs. 

(ⅱ) The results in Fig. 5–7 are for kernel widths 1, 4, and 8, 

respectively. Using LIME, we can show the reason for the 

judgment based on the AI model.  

The contribution of each variable varied greatly depending 

on the kernel width. When the kernel width was rather narrow 

at 1.0, the system’s ability to describe was significantly 

degraded.  

According to this, the characteristics of the figures are 

similar to those of Fig. 6. Fig. 6 and 7 present diverse features. 

Therefore, the above can be said to have succeeded in 

visualizing the judgment basis of XAI. 

 

 

 
Fig. 4. Probability of prediction: Bar graph from LIME analyses concerning various data from subjects’ survey sheets and hoe vertical acceleration. 
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Fig. 5. Contribution ratios of variable data from LIME analyses concerning basic information and hoe vertical acceleration. Width of kernel: 1.0. 

 

 
Fig. 6. Contribution ratios of variable data from LIME analyses concerning basic information and hoe vertical acceleration. Width of kernel: 4.0. 
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Fig. 7. Contribution ratios of variable data from LIME analyses concerning basic information and hoe vertical acceleration .Width of kernel: 8.0. 

 

IV. DISCUSSION 

As shown in Fig. 4, the probability of prediction of the 

experienced subject group is 0.04 higher than that of the 

inexperienced subject group, which is very similar to the 

proportions presented in Table Ⅰ.  

As shown in Figs. 5–7, “Age”, “Career (experienced year)”, 

“SD of hoe (1st trial)”, and other variables were closer to the 

experienced subject group. In other words, these factors are 

explanatory for the experienced subjects group. 

Interestingly, subjects’ “DC of hoe (1st trial)” and “How 

much sports past…?” hardly affected to the contribution 

ratios. 

Of course, we should consider the subjects’ physical 

(muscle) strength, stature, and weight. For this analysis, there 

were a variety of other problems. These may be solved by 

increasing the number and variety of subjects, or by 

homogenizing their stature and weight to the extent possible. 

 

V. CONCLUSION AND FUTURE TASKS 

We verified the fundamental operations concerning each 

function of the XAI using SHAP, LIME, and Light GBM 

systems and tested the proposed system. After reviewing past 

similar results related to human dynamics and primary-

components-based analyses, our achievements seemed 

appropriate to some extent. First, we presented several basic 

steps of the aforementioned styles of systems and methods by 

examining real agri-work sites, with particular consideration 

for the fusion of agricultural informatics, statistics, and 

human dynamics. Second, we obtained promising non-

specific three-axis acceleration and angular velocity time-

series data for agri-motions. Finally, we executed and 

presented (1) the probability of the prediction, and (2) the 

contribution ratio of variable datasets. 

In future work, we should add a greater variety of worker 

information into these statistical data. Furthermore, other 

recent methodologies of human dynamics and visual data 

analysis (e.g., higher mathematics) should be tested and 

incorporated, as appropriate. Using these results and many 

sets of experimental evidence, we plan to launch practical 

supporting projects for workers. 

From the perspective of global agricultural dynamics, we 

have plans to launch to other countries. Although these trials 

have been challenging, they will provide significant benefit 

to workers in agricultural industries. 
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